Curved-fiber pull-out model for nanocomposites. Part 2: Interfacial debonding and sliding

[1]  Michael Griebel,et al.  Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces , 2002 .

[2]  K. Liao,et al.  Interfacial characteristics of a carbon nanotube–polystyrene composite system , 2001 .

[3]  H. Wagner Nanotube-polymer adhesion: a mechanics approach , 2002 .

[4]  C. Hsueh Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites VII:improved analyses for bonded interfaces , 1992 .

[5]  P. Beaumont,et al.  Cracking and toughening of concrete and polymer-concrete dispersed with short steel wires , 1978 .

[6]  S. Wong,et al.  Electrical and mechanical properties of expanded graphite‐reinforced high‐density polyethylene , 2004 .

[7]  R. Andrews,et al.  Carbon nanotube polymer composites , 2004 .

[8]  A. Roy,et al.  Multi-scale mechanics of nanocomposites including interface: Experimental and numerical investigation , 2005 .

[9]  Shou-wen Yu,et al.  Bridge-toughening analysis of the fiber reinforced composite containing interphase effect , 1994 .

[10]  J. K. Lee,et al.  Frictional Stress Evaluation along the Fiber‐Matrix Interface in Ceramic Matrix Composites , 1986 .

[11]  Bodo Fiedler,et al.  FUNDAMENTAL ASPECTS OF NANO-REINFORCED COMPOSITES , 2006 .

[12]  J. Coleman,et al.  Enhancement of Modulus, Strength, and Toughness in Poly(methyl methacrylate)‐Based Composites by the Incorporation of Poly(methyl methacrylate)‐Functionalized Nanotubes , 2006 .

[13]  Brian N. Cox,et al.  Interfacial sliding near a free surface in a fibrous or layered composite during thermal cycling , 1990 .

[14]  R. D. Bradshaw,et al.  Fiber waviness in nanotube-reinforced polymer composites—II: modeling via numerical approximation of the dilute strain concentration tensor , 2003, Composites Science and Technology.

[15]  C. Hsueh Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites II: Non-constant interfacial bond strength , 1990 .

[16]  L. B. Freund,et al.  The axial force needed to slide a circular fiber along a hole in an elastic material and implications for fiber pull-out , 1992 .

[17]  Analysis of carbon nanotube pull-out from a polymer matrix , 2003 .

[18]  Frank T. Fisher,et al.  Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties , 2003 .

[19]  U. Sundararaj,et al.  Big returns from small fibers: A review of polymer/carbon nanotube composites , 2004 .

[20]  Jonathan N. Coleman,et al.  Mechanical Reinforcement of Polymers Using Carbon Nanotubes , 2006 .

[21]  K. Schulte,et al.  Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content , 2004 .

[22]  R. Gorga,et al.  Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding , 2006 .

[23]  L. Brinson,et al.  Curved-fiber pull-out model for nanocomposites. Part 1: Bonded stage formulation , 2009 .

[24]  John W. Hutchinson,et al.  Models of fiber debonding and pullout in brittle composites with friction , 1990 .

[25]  P. Lawrence,et al.  Some theoretical considerations of fibre pull-out from an elastic matrix , 1972 .

[26]  David B. Marshall,et al.  Analysis of fiber debonding and sliding experiments in brittle matrix composites , 1992 .

[27]  C. Hsueh,et al.  Elastic load transfer from partially embedded axially loaded fibre to matrix , 1988 .

[28]  R. Andrews,et al.  Multiwall Carbon Nanotubes: Synthesis and Application , 2003 .

[29]  Triplicane A. Parthasarathy,et al.  THEORETICAL ANALYSIS OF THE FIBER PULLOUT AND PUSHOUT TESTS , 1991 .

[30]  Bodo Fiedler,et al.  Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study , 2005 .

[31]  Brian N. Cox,et al.  Slip, stick, and reverse slip characteristics during dynamic fibre pullout , 2003 .

[32]  K. C. Hong,et al.  Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites , 1988 .

[33]  T. Clyne,et al.  The use of single fibre pushout testing to explore interfacial mechanics in SiC monofilament-reinforced Ti—II. Application of the test to composite material , 1992 .

[34]  K. Liao,et al.  A nonlinear pullout model for unidirectional carbon nanotube-reinforced composites , 2004 .

[35]  K. Faber,et al.  Interfacial debonding and sliding in brittle-matrix composites measured using an improved fiber pullout technique , 1995 .

[36]  L. N. McCartney,et al.  New theoretical model of stress transfer between fibre and matrix in a uniaxially fibre-reinforced composite , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  M. K. Brun,et al.  Effect of thermal expansion mismatch and fiber coating on the fiber/matrix interfacial shear stress in ceramic matrix composites , 1988 .

[38]  L. Brinson,et al.  Functionalized SWNT/polymer nanocomposites for dramatic property improvement , 2005 .

[39]  Ben Wang,et al.  Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites , 2004 .

[40]  N. Yao,et al.  Molecular mechanics of binding in carbon-nanotube–polymer composites , 2000 .

[41]  Wei Chen,et al.  Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)–carbon nanotube composite films , 2005 .

[42]  I. Beyerlein,et al.  NEW METHODOLOGY FOR DETERMINING IN SITU FIBER, MATRIX AND INTERFACE STRESSES IN DAMAGED MULTIFIBER COMPOSITES , 1998 .

[43]  I. Daniel,et al.  Processing of expanded graphite reinforced polymer nanocomposites , 2006 .

[44]  John A. Nairn,et al.  A Revised Shear-Lag Analysis of an Energy Model for Fiber-Matrix Debonding , 1996 .

[45]  Ajit K. Roy,et al.  Engineered interfaces in fiber reinforced composites , 1999 .

[46]  T. Coyle,et al.  Determination of the Interface Strength in Glass‐Sic Composites via Single Fiber Tensile Testing , 2008 .

[47]  John A. Nairn,et al.  On the Use of Shear-Lag Methods for Analysis of Stress Transfer in Unidirectional Composites , 1997 .

[48]  M. Moniruzzaman,et al.  Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method , 2006 .

[49]  B. Cotterell,et al.  Fracture of fiber-reinforced materials , 1988 .

[50]  C. Hsueh Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites. III: With residual radial and axial stresses , 1991 .

[51]  Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites Part VI. Interpretation of fiber pull-out curves , 1991 .

[52]  K. Liao,et al.  Physical interactions at carbon nanotube-polymer interface , 2003 .

[53]  L. Brinson,et al.  A method for quantifying relative interfacial shear stress in MWNT/polymer composites , 2007 .

[54]  I. Beyerlein,et al.  A time dependent micro-mechanical fiber composite model for inelastic zone growth in viscoelastic matrices , 2003 .

[55]  W. Bao Electrical and Mechanical Properties of Graphene , 2011 .

[56]  Peter W. R. Beaumont,et al.  Debonding and pull-out processes in fibrous composites , 1985 .

[57]  S. Goh,et al.  Enhancement of stiffness, strength, ductility and toughness of poly(ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes , 2007 .

[58]  3D analysis of stress transfer in the micromechanics of fiber reinforced composites by using an eigen-function expansion method , 2000 .

[59]  I. Beyerlein,et al.  Stress profiles and energy release rates around fiber breaks in a lamina with propagating zones of matrix yielding and debonding , 1997 .

[60]  T. Clyne,et al.  The use of single fibre pushout testing to explore interfacial mechanics in SiC monofilament-reinforced Ti—I. A photoelastic study of the test , 1992 .

[61]  B. W. Rosen,et al.  Tensile failure of fibrous composites. , 1964 .

[62]  R. Arridge,et al.  The effect of interfacial radial and shear stress on fibre pull-out in composite materials , 1973 .

[63]  C. Hsueh,et al.  Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites , 1990 .

[64]  J. Davies,et al.  Coupling effect of interphase and fibre-bridging on the toughness of FRP , 2005 .

[65]  K. Faber,et al.  Interfacial shear stresses in SiC and Al/sub 2/O/sub 3/ fiber-reinforced glasses , 1988 .

[66]  Gregory M. Odegard,et al.  MODELING TECHNIQUES FOR DETERMINATION OF MECHANICAL PROPERTIES OF POLYMER NANOCOMPOSITES , 2005 .

[67]  Kyung-Suk Kim,et al.  The micromechanics of fiber pull-out , 1996 .

[68]  M. Shannag,et al.  Interfacial Debonding and Sliding in Brittle Cementmatrix Composites from Steel Fiber Pullout Tests , 1994 .

[69]  A. Heuer,et al.  Temperature Dependence of Interfacial Shear Strength in SiC‐Fiber‐Reinforced Reaction‐Bonded Silicon Nitride , 1990 .

[70]  Chun-Hway Hsueh Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites: VIII: The energy-based debonding criterion , 1992 .

[71]  Chi Wang Fracture mechanics of single-fibre pull-out test , 1997 .