Structure prediction drives materials discovery

Progress in the discovery of new materials has been accelerated by the development of reliable quantum-mechanical approaches to crystal structure prediction. The properties of a material depend very sensitively on its structure; therefore, structure prediction is the key to computational materials discovery. Structure prediction was considered to be a formidable problem, but the development of new computational tools has allowed the structures of many new and increasingly complex materials to be anticipated. These widely applicable methods, based on global optimization and relying on little or no empirical knowledge, have been used to study crystalline structures, point defects, surfaces and interfaces. In this Review, we discuss structure prediction methods, examining their potential for the study of different materials systems, and present examples of computationally driven discoveries of new materials — including superhard materials, superconductors and organic materials — that will enable new technologies. Advances in first-principle structure predictions also lead to a better understanding of physical and chemical phenomena in materials.Recent breakthroughs in crystal structure prediction have enabled the discovery of new materials and of new physical and chemical phenomena. This Review surveys structure prediction methods and presents examples of results in different classes of materials.

[1]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[2]  Yi Cui,et al.  A Novel Phase of Li15Si4 Synthesized under Pressure , 2015 .

[3]  R. Hemley,et al.  Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. , 2018, Physical review letters.

[4]  Stefano de Gironcoli,et al.  ζ-Glycine: insight into the mechanism of a polymorphic phase transition , 2017, IUCrJ.

[5]  Stefano de Gironcoli,et al.  Reproducibility in density functional theory calculations of solids , 2016, Science.

[6]  Ulli Englert,et al.  Prediction of crystal structures , 1996 .

[7]  Corey Oses,et al.  Materials Cartography: Representing and Mining Material Space Using Structural and Electronic Fingerprints , 2014, 1412.4096.

[8]  C. Catlow,et al.  Inorganic crystal structure prediction using simplified potentials and experimental unit cells: application to the polymorphs of titanium dioxide , 1993 .

[9]  Yanming Ma,et al.  Pressure-stabilized superconductive yttrium hydrides , 2015, Scientific Reports.

[10]  R. Hennig,et al.  Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials. , 2016, Physical review letters.

[11]  Artem R. Oganov,et al.  Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity , 2017, Science Advances.

[12]  A N Kolmogorov,et al.  New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. , 2010, Physical review letters.

[13]  Tao Jin,et al.  Atomic-scale observation and analysis of chemical ordering in M3B2 and M5B3 borides , 2018 .

[14]  Yanming Ma,et al.  High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. , 2015, Physical review letters.

[15]  C Z Wang,et al.  Exploring the structural complexity of intermetallic compounds by an adaptive genetic algorithm. , 2014, Physical review letters.

[16]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[17]  Daan Frenkel,et al.  Structural analysis of high-dimensional basins of attraction. , 2016, Physical review. E.

[18]  Tao Fan,et al.  Efficient technique for computational design of thermoelectric materials , 2016, Comput. Phys. Commun..

[19]  Heinrich Rohrer,et al.  7 × 7 Reconstruction on Si(111) Resolved in Real Space , 1983 .

[20]  R. Naslain,et al.  The crystal structure of the ф phase in the boron-sodium system , 1970 .

[21]  C. V. Ciobanu,et al.  Finding the reconstructions of semiconductor surfaces via a genetic algorithm [rapid communication] , 2004 .

[22]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[23]  Mario Valle,et al.  Transparent dense sodium , 2009, Nature.

[24]  Sven Öberg,et al.  Identification of the tetra-interstitial in silicon , 2001 .

[25]  Su-Huai Wei,et al.  Towards direct-gap silicon phases by the inverse band structure design approach. , 2013, Physical review letters.

[26]  Takashi Miyake,et al.  Body-centered tetragonal C4: a viable sp3 carbon allotrope. , 2010, Physical review letters.

[27]  Martin P. Harmer,et al.  The Phase Behavior of Interfaces , 2011, Science.

[28]  Shujiang Yang,et al.  Genetic algorithm optimization of defect clusters in crystalline materials , 2015 .

[29]  A. Oganov,et al.  Stable reconstruction of the (110) surface and its role in pseudocapacitance of rutile-like RuO2 , 2017, Scientific Reports.

[30]  S. Ong,et al.  The thermodynamic scale of inorganic crystalline metastability , 2016, Science Advances.

[31]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[32]  Graeme M. Day,et al.  Current approaches to predicting molecular organic crystal structures , 2011 .

[33]  Yanming Ma,et al.  Dissociation products and structures of solid H 2 S at strong compression , 2015, 1508.03900.

[34]  W. Setyawan,et al.  Grain boundary phases in bcc metals. , 2017, Nanoscale.

[35]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[36]  Qiang Zhu,et al.  The stability and unexpected chemistry of oxide clusters. , 2018, Physical chemistry chemical physics : PCCP.

[37]  Artem R. Oganov Modern Methods of Crystal Structure Prediction: OGANOV:CRYSTAL - METHODS O-BK , 2010 .

[38]  Nikolai A Zarkevich,et al.  Reliable first-principles alloy thermodynamics via truncated cluster expansions. , 2004, Physical review letters.

[39]  Jun Li,et al.  Observation of an all-boron fullerene. , 2014, Nature chemistry.

[40]  Nicola Nosengo,et al.  Can artificial intelligence create the next wonder material? , 2016, Nature.

[41]  Stefan Goedecker,et al.  Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.

[42]  A. R. Oganov,et al.  On the hardness of a new boron phase, orthorhombic γ-B28 , 2008 .

[43]  Richard G Hennig,et al.  A grand canonical genetic algorithm for the prediction of multi-component phase diagrams and testing of empirical potentials , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  Yuejian Wang,et al.  Crystal structure of graphite under room-temperature compression and decompression , 2012, Scientific Reports.

[45]  Qiang Zhu,et al.  New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..

[46]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[47]  Marie-Hélène Lemée-Cailleau,et al.  Crystal structure of ammonia monohydrate phase II. , 2009, Journal of the American Chemical Society.

[48]  Qiang Zhu,et al.  Denser than diamond: Ab initio search for superdense carbon allotropes , 2011 .

[49]  E. Gregoryanz,et al.  Evidence for a new phase of dense hydrogen above 325 gigapascals , 2016, Nature.

[50]  Fabiano Corsetti,et al.  Enhanced Configurational Entropy in High-Density Nanoconfined Bilayer Ice. , 2015, Physical review letters.

[51]  Chris J. Pickard,et al.  Energetics of hydrogen/lithium complexes in silicon analyzed using the Maxwell construction , 2011, 1201.4940.

[52]  A. Janotti,et al.  Quantum computing with defects , 2013 .

[53]  D. Fontaine Configurational Thermodynamics of Solid Solutions , 1979 .

[54]  Bjørk Hammer,et al.  A genetic algorithm for first principles global structure optimization of supported nano structures. , 2014, The Journal of chemical physics.

[55]  F. Stillinger Exponential multiplicity of inherent structures , 1999 .

[56]  Chris J. Pickard,et al.  Double-layer ice from first principles , 2017 .

[57]  Feng Liu,et al.  Multivalency-Driven Formation of Te-Based Monolayer Materials: A Combined First-Principles and Experimental study. , 2017, Physical review letters.

[58]  Karena W. Chapman,et al.  Elucidation of the Local and Long-Range Structural Changes that Occur in Germanium Anodes in Lithium-Ion Batteries , 2015 .

[59]  Li Dong,et al.  A First-Principles Study on CrZrMnGa , 2015 .

[60]  Chris J. Pickard,et al.  Hydrogen/silicon complexes in silicon from computational searches , 2008, 0808.1203.

[61]  Chao Jiang,et al.  A combined first-principles and experimental study of the lattice site preference of Pt in B2 NiAl , 2005 .

[62]  Qiang Zhu,et al.  The Third Ambient Aspirin Polymorph , 2017 .

[63]  Artem R Oganov,et al.  Actinium Hydrides AcH10, AcH12, and AcH16 as High-Temperature Conventional Superconductors. , 2018, The journal of physical chemistry letters.

[64]  Maria Baldini,et al.  Synthesis and Stability of Lanthanum Superhydrides. , 2018, Angewandte Chemie.

[65]  Chris J. Pickard,et al.  Structure of phase III of solid hydrogen , 2007 .

[66]  Alexander V. Shapeev,et al.  Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning , 2018, Physical Review B.

[67]  Artem R Oganov,et al.  Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface. , 2016, Nanoscale.

[68]  M I Katsnelson,et al.  Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. , 2008, Physical review letters.

[69]  Chris J. Pickard,et al.  Low-energy tetrahedral polymorphs of carbon, silicon, and germanium , 2015, 1508.02631.

[70]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[71]  Barbara Albert A New “Old” Sodium Boride: Linked Pentagonal Bipyramids and Octahedra in Na3B20. , 1998 .

[72]  Dorothy M. Duffy,et al.  Ab initio study of intrinsic defects in zirconolite , 2011 .

[73]  Joachim Sauer,et al.  Oxygen adsorption on Mo(112) surface studied by ab initio genetic algorithm and experiment. , 2007, The Journal of chemical physics.

[74]  Na Wang,et al.  Effects of ferroelectric polarization on surface phase diagram: Evolutionary algorithm study of the BaTiO 3 (001) surface , 2015, 1505.06830.

[75]  Artem R. Oganov,et al.  Hydrogen sulfide at high pressure: change in stoichiometry , 2016 .

[76]  Roald Hoffmann,et al.  High pressure electrides: a predictive chemical and physical theory. , 2014, Accounts of chemical research.

[77]  D. Graf,et al.  Superconductivity at 250 K in lanthanum hydride under high pressures , 2018, Nature.

[78]  Artem R. Oganov,et al.  Synthesis of Borophenes: Anisotropic, Two‐Dimensional Boron Polymorphs. , 2016 .

[79]  Peter J. Eng,et al.  Bonding Changes in Compressed Superhard Graphite , 2003, Science.

[80]  P D Haynes,et al.  Are the structures of twist grain boundaries in silicon ordered at 0 K? , 2006, Physical review letters.

[81]  P. E. Kornilovitch,et al.  The "crab" bipolaron as a possible route to room temperature superconductivity , 2006 .

[82]  Wataru Utsumi And Takehiko Yagi,et al.  Light-Transparent Phase Formed by Room-Temperature Compression of Graphite , 1991, Science.

[83]  Andrew J. Morris,et al.  Thermodynamically stable lithium silicides and germanides from density functional theory calculations , 2014, 1402.6233.

[84]  Artem R. Oganov,et al.  Refined phase diagram of the H-S system with high- T c superconductivity , 2017 .

[85]  Qiang Zhu,et al.  Evolutionary metadynamics: a novel method to predict crystal structures , 2012, 1204.3650.

[86]  Xin Zhao,et al.  Interface Structure Prediction from First-Principles , 2014 .

[87]  W. Nowacki,et al.  Symmetrie und physikalisch‐chemische Eigenschaften krystallisierter Verbindungen. I. Die Verteilung der Krystallstrukturen über die 219 Raumgruppen , 1942 .

[88]  N. Reyren,et al.  Electric field control of the LaAlO3/SrTiO3 interface ground state , 2008, Nature.

[89]  Satoshi Nakano,et al.  Raman scattering and X-ray diffraction studies on phase III of solid hydrogen , 2017 .

[90]  Yuichi Akahama,et al.  Structural studies of solid methane at high pressures , 1999 .

[91]  Su-Huai Wei,et al.  Understanding the clean interface between covalent Si and ionic Al2O3. , 2009, Physical review letters.

[92]  Bice Fubini,et al.  Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. , 2003, Free radical biology & medicine.

[93]  Qiang Zhu,et al.  Semimetallic Two-Dimensional Boron Allotrope with Massless Dirac Fermions , 2013, 1309.2596.

[94]  Artem R Oganov,et al.  New Tungsten Borides, Their Stability and Outstanding Mechanical Properties. , 2018, The journal of physical chemistry letters.

[95]  A. R. Oganov,et al.  Boron: a hunt for superhard polymorphs , 2009 .

[96]  T. Strobel,et al.  Synthesis of an open-framework allotrope of silicon. , 2015, Nature materials.

[97]  Artem R. Oganov,et al.  Understanding the nature of “superhard graphite” , 2012, Scientific Reports.

[98]  Timothy S Bush,et al.  Evolutionary programming techniques for predicting inorganic crystal structures , 1995 .

[99]  Chris J Pickard,et al.  Structure and Metallicity of Phase V of Hydrogen. , 2018, Physical review letters.

[100]  C. Acha,et al.  High-pressure effects in fluorinated HgBa2Ca2Cu3O8 + δ , 2004 .

[101]  Vadim S. Urusov,et al.  Frequency distribution and selection of space groups in inorganic crystal chemistry , 2009 .

[102]  Andrzej Falenty,et al.  Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate , 2014, Nature.

[103]  Artem R. Oganov,et al.  Modern methods of crystal structure prediction , 2011 .

[104]  Richard G. Hennig,et al.  Grand-canonical evolutionary algorithm for the prediction of two-dimensional materials , 2016 .

[105]  P. Villarsa,et al.  The Pauling File , Binaries Edition , 2004 .

[106]  Chris J Pickard,et al.  Aluminium at terapascal pressures. , 2010, Nature materials.

[107]  Yonghui Du,et al.  Hardness of FeB4: density functional theory investigation. , 2014, The Journal of chemical physics.

[108]  J. Pannetier,et al.  Prediction of crystal structures from crystal chemistry rules by simulated annealing , 1990, Nature.

[109]  M. Finnis,et al.  A genetic algorithm for predicting the structures of interfaces in multicomponent systems. , 2010, Nature materials.

[110]  Josh E. Campbell,et al.  Predicted energy–structure–function maps for the evaluation of small molecule organic semiconductors , 2017 .

[111]  Bryce Meredig,et al.  A hybrid computational-experimental approach for automated crystal structure solution. , 2013, Nature materials.

[112]  Timothy A. Strobel,et al.  High‐Pressure Synthesis and Characterization of Incompressible Titanium Pernitride. , 2016 .

[113]  Yanming Ma,et al.  Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity. , 2017, Physical review letters.

[114]  Yanming Ma,et al.  Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system , 2016, Nature.

[115]  O. Grassmann,et al.  Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening , 2015, Nature Communications.

[116]  Yoshiyuki Kawazoe,et al.  Low-Temperature Phase Transformation from Graphite to s p 3 Orthorhombic Carbon , 2011 .

[117]  Hideo Hosono,et al.  Exploration for Two-Dimensional Electrides via Database Screening and Ab Initio Calculation , 2014 .

[118]  Volker L. Deringer,et al.  Data-Driven Learning of Total and Local Energies in Elemental Boron. , 2017, Physical review letters.

[119]  P. Humble,et al.  The structure and mechanism of formation of platelets in natural type Ia diamond , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[120]  Qiang Zhu,et al.  The Structure of Glycine Dihydrate: Implications for the Crystallization of Glycine from Solution and Its Structure in Outer Space. , 2017, Angewandte Chemie.

[121]  I. Loa,et al.  The distorted close-packed crystal structure of methane A. , 2010, The Journal of chemical physics.

[122]  Gustaaf Van Tendeloo,et al.  Discovery of a superhard iron tetraboride superconductor. , 2013, Physical review letters.

[123]  Da Li,et al.  Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity , 2014, Scientific Reports.

[124]  J. Jørgensen,et al.  Structures and Phase Transitions of Na2SO4 , 1996 .

[125]  J. C. Schön,et al.  First Step Towards Planning of Syntheses in Solid‐State Chemistry: Determination of Promising Structure Candidates by Global Optimization , 1996 .

[126]  Timothy A. Strobel,et al.  High -Pressure Synthesis and Characterization of Incompressible Titanium Pernitride , 2016 .

[127]  A. Heuer Energy Landscapes. Applications to Clusters, Biomolecules and Glasses. By David J. Wales. , 2005 .

[128]  David L. Olmsted,et al.  Structural phase transformations in metallic grain boundaries , 2012, Nature Communications.

[129]  Qiang Zhu,et al.  DDT Polymorphism and the Lethality of Crystal Forms. , 2017, Angewandte Chemie.

[130]  A. N. Kolmogorov,et al.  Stability of 41 metal - boron systems at 0 GPa and 30 GPa from first principles , 2013, 1310.4157.

[131]  Paul Dumas,et al.  Experimental and theoretical evidence for an ionic crystal of ammonia at high pressure , 2014 .

[132]  Pekka Koskinen,et al.  Structural relaxation made simple. , 2006, Physical review letters.

[133]  W. H. Baur,et al.  The perils of Cc : comparing the frequencies of falsely assigned space groups with their general population , 1992 .

[134]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[135]  Hui Wang,et al.  Superconductive sodalite-like clathrate calcium hydride at high pressures , 2012, Proceedings of the National Academy of Sciences.

[136]  Chris J. Pickard,et al.  Hydrogen/nitrogen/oxygen defect complexes in silicon from computational searches , 2009 .

[137]  Mark E. Oxley,et al.  Binary, ternary and quaternary compound former/nonformer prediction via Mendeleev number , 2001 .

[138]  Hans-Rudolf Hagemann,et al.  Porous and Dense Magnesium Borohydride Frameworks: Synthesis, Stability, and Reversible Absorption of Guest Species. , 2012 .

[139]  Chris J. Pickard,et al.  First-principles structure determination of interface materials: The NixInAs nickelides , 2015 .

[140]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[141]  Alán Aspuru-Guzik,et al.  From computational discovery to experimental characterization of a high hole mobility organic crystal , 2011, Nature communications.

[142]  A. Oganov,et al.  Computational Search for Novel Hard Chromium-Based Materials. , 2017, The journal of physical chemistry letters.

[143]  Zahed Allahyari,et al.  Coevolutionary search for optimal materials in the space of all possible compounds , 2018, npj Computational Materials.

[144]  Paul F. McMillan,et al.  Carbon nitride frameworks and dense crystalline polymorphs , 2016, 1605.02893.

[145]  Naohisa Hirao,et al.  Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa , 2010 .

[146]  Yoshiyuki Kawazoe,et al.  Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. , 2011, Physical review letters.

[147]  A. Oganov,et al.  How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.

[148]  Qiang Zhu,et al.  Variable-composition structural optimization and experimental verification of MnB3 and MnB4. , 2014, Physical chemistry chemical physics : PCCP.

[149]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[150]  E. Gregoryanz,et al.  Raman spectroscopy of hot hydrogen above 200 GPa. , 2015, Nature materials.

[151]  Chris J. Pickard,et al.  Predicting interface structures: From SrTiO 3 to graphene , 2014, 1407.2153.

[152]  Roald Hoffmann,et al.  Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure , 2017, Proceedings of the National Academy of Sciences.

[153]  Claire S. Adjiman,et al.  Report on the sixth blind test of organic crystal structure prediction methods , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[154]  Richard S. Judson,et al.  Conformational searching methods for small molecules. II. Genetic algorithm approach , 1993, J. Comput. Chem..

[155]  Cormac Toher,et al.  Universal fragment descriptors for predicting properties of inorganic crystals , 2016, Nature Communications.

[156]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[157]  Qiang Zhu,et al.  Predicting phase behavior of grain boundaries with evolutionary search and machine learning , 2017, Nature Communications.

[158]  Hui Wang,et al.  Construction of crystal structure prototype database: methods and applications , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[159]  Yongjun He,et al.  Is Orthorhombic Iron Tetraboride Superhard , 2014 .

[160]  Carolyn R. Bertozzi,et al.  Methods and Applications , 2009 .

[161]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[162]  E. N. Kaufmann High Temperature Superconductors, Physics Funding, Materials Physics Highlighted at American Physical Society Meeting , 1988 .

[163]  Chris J Pickard,et al.  Highly compressed ammonia forms an ionic crystal. , 2008, Nature materials.

[164]  Hui Wang,et al.  Computer-Assisted Inverse Design of Inorganic Electrides , 2017 .

[165]  Jian Sun,et al.  Direct Band Gap Silicon Allotropes , 2014 .

[166]  A. Skowron,et al.  Methodology and applications , 1998 .

[167]  Artem R Oganov,et al.  Method for Simultaneous Prediction of Atomic Structure and Stability of Nanoclusters in a Wide Area of Compositions. , 2018, The journal of physical chemistry letters.

[168]  Hui Wang,et al.  Superhard monoclinic polymorph of carbon. , 2009, Physical review letters.

[169]  Xingao Gong,et al.  Inverse Design of Materials by Multi-Objective Differential Evolution($IM^2ODE$) , 2014 .

[170]  L. Rapp,et al.  Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion , 2015, Nature Communications.

[171]  V. Stevanović Sampling Polymorphs of Ionic Solids using Random Superlattices. , 2015, Physical review letters.

[172]  N. Ashcroft Hydrogen dominant metallic alloys: high temperature superconductors? , 2004, Physical review letters.

[173]  Chris J Pickard,et al.  Predicted pressure-induced s-band ferromagnetism in alkali metals. , 2011, Physical review letters.

[174]  Chris J Pickard,et al.  Two Dimensional Ice from First Principles: Structures and Phase Transitions. , 2015, Physical review letters.

[175]  H G Drickamer,et al.  Carbon: A New Crystalline Phase , 1963, Science.

[176]  Artem R. Oganov,et al.  Evolutionary search for novel superhard materials , 2011 .

[177]  Qiang Zhu,et al.  Generalized evolutionary metadynamics for sampling the energy landscapes and its applications , 2015 .

[178]  J. Behler,et al.  Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential. , 2008, Physical review letters.

[179]  Artem R Oganov,et al.  Crystal structure prediction: reflections on present status and challenges. , 2018, Faraday discussions.

[180]  Qiang Zhu,et al.  New reconstructions of the (110) surface of rutile TiO2 predicted by an evolutionary method. , 2014, Physical review letters.

[181]  Qiang Zhu,et al.  Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications. , 2012, Acta crystallographica. Section B, Structural science.

[182]  Álvaro Vázquez-Mayagoitia,et al.  GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction. , 2018, Journal of chemical theory and computation.

[183]  J. L. Dye,et al.  Electrides: Ionic Salts with Electrons as the Anions , 1990, Science.

[184]  Shibing Wang,et al.  Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. , 2012, Physical review letters.

[185]  Stefan Goedecker,et al.  Low-density silicon allotropes for photovoltaic applications , 2015, 1504.06372.

[186]  Debbie J. Stokes,et al.  Ice structures, patterns, and processes: A view across the icefields , 2012, 1207.3738.

[187]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[188]  Ghanshyam Pilania,et al.  Rational design of all organic polymer dielectrics , 2014, Nature Communications.

[189]  Qiang Zhu,et al.  Predicting the ground-state structure of sodium boride , 2018 .

[190]  Artem R. Oganov,et al.  Unexpected Stable Stoichiometries of Sodium Chlorides , 2012, Science.

[191]  Dmitry Yu. Zubarev,et al.  Global minimum structure searches via particle swarm optimization , 2007, J. Comput. Chem..

[192]  Kenneth D M Harris,et al.  Design of a molecular quasicrystal. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[193]  Xiao Cheng Zeng,et al.  Anatase (101) Reconstructed Surface with Novel Functionalities: Desired Bandgap for Visible Light Absorption and High Chemical Reactivity , 2018 .

[194]  A. Laio,et al.  Predicting crystal structures: the Parrinello-Rahman method revisited. , 2002, Physical review letters.

[195]  Sarah L Price,et al.  Predicting crystal structures of organic compounds. , 2014, Chemical Society reviews.

[196]  Artem R. Oganov,et al.  Evolutionary Method for Predicting Surface Reconstructions with Variable Stoichiometry: Application GaN (101bar1) Surface with Oxygen Adatoms , 2013, 1301.5879.

[197]  Kimoon Lee,et al.  First-Principles Prediction of Thermodynamically Stable Two-Dimensional Electrides. , 2016, Journal of the American Chemical Society.

[198]  Qiang Zhu,et al.  The unexpectedly rich reconstructions of rutile TiO2(011)-(2 × 1) surface and the driving forces behind their formation: an ab initio evolutionary study. , 2016, Physical chemistry chemical physics : PCCP.

[199]  Josh E. Campbell,et al.  Machine learning for the structure–energy–property landscapes of molecular crystals† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04665k , 2017, Chemical science.

[200]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .

[201]  Chris J Pickard,et al.  Crystal Structure of the ZrO Phase at Zirconium/Zirconium Oxide Interfaces** , 2014, Advanced engineering materials.

[202]  Artem R Oganov,et al.  High-Temperature Superconductivity in a Th-H System under Pressure Conditions. , 2017, ACS applied materials & interfaces.

[203]  Artem R. Oganov,et al.  Resorcinol Crystallization from the Melt: A New Ambient Phase and New "Riddles". , 2016, Journal of the American Chemical Society.

[204]  J. Behler Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. , 2011, Physical chemistry chemical physics : PCCP.

[205]  Takahiro Ishikawa,et al.  Crystal Structure of the Superconducting Phase of Sulfur Hydride , 2015, Nature Physics.

[206]  P. Süsse,et al.  A new crystalline phase of indigo , 1980, Naturwissenschaften.

[207]  Michele Ceriotti,et al.  Large-Scale Computational Screening of Molecular Organic Semiconductors Using Crystal Structure Prediction , 2018, Chemistry of Materials.

[208]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[209]  H. Hosono,et al.  Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. , 2012, Nature chemistry.

[210]  Sebastian E. Ahnert,et al.  Revealing and exploiting hierarchical material structure through complex atomic networks , 2017, npj Computational Materials.

[211]  Hideo Hosono,et al.  High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-) , 2003, Science.

[212]  Mikhail Posypkin,et al.  Volunteer computing for computational materials design , 2017 .

[213]  Anubhav Jain,et al.  Computational predictions of energy materials using density functional theory , 2016 .

[214]  P. Villars,et al.  THREE-DIMENSIONAL STRUCTURAL STABILITY DIAGRAMS FOR 648 BINARY AB3 AND 389 BINARY A3B5 INTERMETALLIC COMPOUNDS.: III , 1984 .

[215]  David C. Lonie,et al.  XtalOpt: An open-source evolutionary algorithm for crystal structure prediction , 2011, Comput. Phys. Commun..

[216]  Vladislav A. Blatov,et al.  Topology-based crystal structure generator , 2019, Comput. Phys. Commun..

[217]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[218]  Kristin A. Persson,et al.  Predicting crystal structures with data mining of quantum calculations. , 2003, Physical review letters.

[219]  Hideo Hosono,et al.  Exploration of Stable Strontium Phosphide-Based Electrides: Theoretical Structure Prediction and Experimental Validation. , 2017, Journal of the American Chemical Society.

[220]  Yanming Ma,et al.  Self-assembled ultrathin nanotubes on diamond (100) surface , 2014, Nature Communications.

[221]  Bartomeu Monserrat,et al.  Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress , 2013, 1303.0745.

[222]  Chris J Pickard,et al.  High-pressure phases of silane. , 2006, Physical review letters.

[223]  Barbara Albert,et al.  A New "Old" Sodium Boride: Linked Pentagonal Bipyramids and Octahedra in Na3 B20. , 1998, Angewandte Chemie.

[224]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[225]  Qingfeng Zeng,et al.  Phase stability, chemical bonding and mechanical properties of titanium nitrides: a first-principles study. , 2014, Physical chemistry chemical physics : PCCP.

[226]  Yanming Ma,et al.  First-principles structural design of superhard materials. , 2013, The Journal of chemical physics.

[227]  Richard Dronskowski,et al.  A stable compound of helium and sodium at high pressure. , 2013, Nature chemistry.

[228]  N. Ashcroft,et al.  METALLIC HYDROGEN: A HIGH-TEMPERATURE SUPERCONDUCTOR. , 1968 .

[229]  Daniel W. Davies,et al.  Machine learning for molecular and materials science , 2018, Nature.

[230]  Artem R. Oganov,et al.  Prediction of novel stable compounds in the Mg-Si-O system under exoplanet pressures , 2015, Scientific Reports.

[231]  Annabella Selloni,et al.  Mosaic Texture and Double c-Axis Periodicity of β-NiOOH: Insights from First-Principles and Genetic Algorithm Calculations. , 2014, The journal of physical chemistry letters.

[232]  Qiang Zhu,et al.  First-principles determination of the structure of magnesium borohydride. , 2012, Physical review letters.

[233]  Dianzhong Li,et al.  Structure, bonding, and possible superhardness of CrB4 , 2012 .

[234]  D. G. Pettifor,et al.  A chemical scale for crystal-structure maps , 1984 .

[235]  Ya-Fan Zhao,et al.  Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets , 2014, Nature Communications.

[236]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[237]  A. P. Drozdov,et al.  Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system , 2015, Nature.

[238]  Y. Mishin,et al.  Effect of interface phase transformations on diffusion and segregation in high-angle grain boundaries. , 2013, Physical review letters.

[239]  Patrick B. Smith,et al.  Cesium 18-crown-6 compounds. A crystalline ceside and a crystalline electride , 1983 .

[240]  Michele Parrinello,et al.  Demonstrating the Transferability and the Descriptive Power of Sketch-Map. , 2013, Journal of chemical theory and computation.

[241]  W. Nowacki,et al.  Symmetrie und physikalisch‐chemische Eigenschaften krystallisierter Verbindungen. IV. Bemerkungen zu einer Arbeit von G. Hägg , 1945 .

[242]  M. Cantoni,et al.  Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system , 1993, Nature.

[243]  Mario Valle,et al.  How to quantify energy landscapes of solids. , 2009, The Journal of chemical physics.

[244]  A. Oganov,et al.  Crystal fingerprint space--a novel paradigm for studying crystal-structure sets. , 2010, Acta crystallographica. Section A, Foundations of crystallography.

[245]  Peter J. Bygrave,et al.  Dataset for Crystal Structure Prediction Dataset for: 'Resorcinol Crystallization from the Melt: A New Ambient Phase and New “Riddles”' , 2016 .

[246]  Chris J. Pickard,et al.  Hexagonal structure of phase III of solid hydrogen , 2016, 1609.07486.