An enclosure method for the solution of linear odes with polynomial coefficients

The solution y(x) of an initial value problem for a linear ODE with polynomial coefficients is represented as a power series. The remainder series is bounded by a geometric series, resulting in close bounds for y. The method has been implemented on a computer, where highly accurate results are attained with the staggered correction technique. For guaranteed enclosures on the computer, all roundoff errors have to be taken into account in the course of computation.

[1]  J. Schröder Fehlerabschätzung mit Rechenanlagen bei gewöhnlichen Differentialgleichungen erster Ordnung , 1961 .

[2]  Ulrich W. Kulisch,et al.  Chapter 4 – INTERVAL ARITHMETIC , 1981 .

[3]  L. Collatz The numerical treatment of differential equations , 1961 .

[4]  R. Lohner Einschliessung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen , 1988 .

[5]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[6]  W. Walter Differential and Integral Inequalities , 1970 .

[7]  Wolfgang Walter,et al.  Fortran-xsc: a portable fortran 90 module library for accurate and reliable scientific computing , 1993 .

[8]  P. Hartman Ordinary Differential Equations , 1965 .

[9]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[10]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[11]  Rudolf J. Lohner,et al.  Interval Arithmetic in Staggered Correction Format , 1993 .

[12]  Willard L. Miranker,et al.  Computer arithmetic in theory and practice , 1981, Computer science and applied mathematics.

[13]  Ulrich W. Kulisch,et al.  PASCAL-XSC , 1992, Springer Berlin Heidelberg.

[14]  G. Corliss,et al.  C-Xsc: A C++ Class Library for Extended Scientific Computing , 1993 .

[15]  G. Corliss Guaranteed Error Bounds for Ordinary Differential Equations , 1994 .

[16]  Hans J. Stetter,et al.  Validated Solution of Initial Value Problems for ODE , 1990, Computer Arithmetic and Self-Validating Numerical Methods.

[17]  G. Corliss Survey of interval algorithms for ordinary differential equations , 1989 .

[18]  J. C. Burkill,et al.  Ordinary Differential Equations , 1964 .

[19]  Hans J. Stetter,et al.  Sequential defect correction for high-accuracy floating-point algorithms , 1984 .