Terahertz Modulation by Schottky Junction in Metal-Semiconductor-Metal Microcavities

We discuss arrays of metal-semiconductor-metal cavities as electrically tunable terahertz metasurfaces. The operation of the considered device is based on reverse biasing the Schottky junction formed between top metal strips and the n-type semiconductor buried beneath. The effective Drude permittivity of the cavity array is tuned by changing the depletion layer thickness via a gate bias applied between the strips and a back metal reflector. Combining Maxwell equations for terahertz waves with a drift-diffusion model for the semiconductor carriers into a multiphysics framework, we show that the proposed modulation concept is promising for a large part of the terahertz spectrum.

[1]  Emmanouil E. Kriezis,et al.  Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model , 2017 .

[2]  Daniel M. Mittleman,et al.  An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range , 2014 .

[3]  J. Joannopoulos,et al.  Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  R. S. Stepleman,et al.  Optical Properties of Metal-dielectric-metal Microcavities in the Thz Frequency Range References and Links , 2022 .

[5]  Willie J Padilla,et al.  THz Wave Modulators: A Brief Review on Different Modulation Techniques , 2013 .

[6]  R. Gajić,et al.  Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals , 2015 .

[7]  Gottfried Strasser,et al.  Terahertz phase modulator , 2000 .

[8]  Goran Isić,et al.  Plasmonic lifetimes and propagation lengths in metallodielectric superlattices , 2014 .

[9]  Huili Grace Xing,et al.  Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. , 2012, Nano letters.

[10]  D. J. Lockwood,et al.  Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy , 2005 .

[11]  David Shrekenhamer,et al.  Liquid crystal tunable metamaterial absorber. , 2012, Physical review letters.

[12]  Ali A. Rezazadeh,et al.  Empirical low-field mobility model for III-V compounds applicable in device simulation codes , 2000 .

[13]  Bong Jun Kim,et al.  Active terahertz metamaterials: Nano-slot antennas on VO2 thin films , 2011 .

[14]  Jae-Hyung Jang,et al.  Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors , 2016, Scientific Reports.

[15]  Lishuang Feng,et al.  High performance metamaterials-high electron mobility transistors integrated terahertz modulator. , 2017, Optics express.

[16]  J. O’Hara,et al.  Active terahertz metamaterials , 2010 .

[17]  Constantin Bulucea,et al.  Breakdown voltage of diffused epitaxial junctions , 1991 .

[18]  Antonio Ferraro,et al.  Electrically Tunable Metal–Semiconductor–Metal Terahertz Metasurface Modulators , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Ziqiang Yang,et al.  Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. , 2015, Nano letters.

[20]  M. Koch,et al.  Room-temperature operation of an electrically driven terahertz modulator , 2004 .

[21]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[22]  C. Sirtori,et al.  Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies. , 2009, Physical review letters.