Random Walks on Graphs: A Survey

Various aspects of the theory of random walks on graphs are surveyed. In particular, estimates on the important parameters of access time, commute time, cover time and mixing time are discussed. Connections with the eigenvalues of graphs and with electrical networks, and the use of these connections in the study of random walks is described. We also sketch recent algorithmic applications of random walks, in particular to the problem of sampling.

[1]  Peter W. Glynn,et al.  Stationarity detection in the initial transient problem , 1992, TOMC.

[2]  György Elekes,et al.  A geometric inequality and the complexity of computing volume , 1986, Discret. Comput. Geom..

[3]  R. Ravi,et al.  Approximation through multicommodity flow , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[4]  David Applegate,et al.  Sampling and integration of near log-concave functions , 1991, STOC '91.

[5]  J. Keilson Markov Chain Models--Rarity And Exponentiality , 1979 .

[6]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[7]  Mark Jerrum,et al.  Large Cliques Elude the Metropolis Process , 1992, Random Struct. Algorithms.

[8]  Frank Thomson Leighton,et al.  An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[9]  Carsten Thomassen,et al.  Resistances and currents in infinite electrical networks , 1990, J. Comb. Theory, Ser. B.

[10]  Peter Winkler,et al.  Exact Mixing in an Unknown Markov Chain , 1995, Electron. J. Comb..

[11]  Andrei Z. Broder,et al.  How hard is it to marry at random? (On the approximation of the permanent) , 1986, STOC '86.

[12]  L. Khachiyan Complexity of Polytope Volume Computation , 1993 .

[13]  Uriel Feige,et al.  A Tight Upper Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[14]  I PeterMatthews Some Sample Path Properties of a Random Walk on the Cube , 1989 .

[15]  Miklós Simonovits,et al.  The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[16]  L. Lovász Combinatorial problems and exercises , 1979 .

[17]  L. Khachiyan,et al.  On the conductance of order Markov chains , 1991 .

[18]  Uriel Feige,et al.  A Tight Lower Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[19]  Miklós Simonovits,et al.  On the randomized complexity of volume and diameter , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[20]  Mark Jerrum,et al.  Conductance and the rapid mixing property for Markov chains: the approximation of permanent resolved , 1988, STOC '88.

[21]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[22]  J. D. Annan,et al.  A Randomised Approximation Algorithm for Counting the Number of Forests in Dense Graphs , 1994, Combinatorics, Probability and Computing.

[23]  Shing-Tung Yau,et al.  Eigenvalues of Graphs and Sobolev Inequalities , 1995, Combinatorics, Probability and Computing.

[24]  Uriel Feige,et al.  Random Walks on Regular and Irregular Graphs , 1996, SIAM J. Discret. Math..

[25]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[26]  Andrei Z. Broder,et al.  Generating random spanning trees , 1989, 30th Annual Symposium on Foundations of Computer Science.

[27]  J. A. Fill Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .

[28]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[29]  G. Pólya Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .

[30]  Fillia Makedon,et al.  Fast approximation algorithms for multicommodity flow problems , 1991, STOC '91.

[31]  Peter Winkler,et al.  A note on the last new vertex visited by a random walk , 1993, J. Graph Theory.

[32]  Peter Winkler,et al.  Efficient stopping rules for Markov chains , 1995, STOC '95.

[33]  L. Asz Random Walks on Graphs: a Survey , 2022 .

[34]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[35]  C. Nash-Williams,et al.  Random walk and electric currents in networks , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  Peter Winkler,et al.  On the number of Eulerian orientations of a graph , 1996 .

[37]  Tomás Feder,et al.  Balanced matroids , 1992, STOC '92.

[38]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[39]  P. Matthews Covering Problems for Brownian Motion on Spheres , 1988 .

[40]  Richard J. Lipton,et al.  Random walks, universal traversal sequences, and the complexity of maze problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[41]  Uriel Feige Collecting Coupons on Trees, and the Analysis of Random Walks , 1993 .

[42]  Peter Winkler,et al.  Maximum itting Time for Random Walks on Graphs , 1990, Random Struct. Algorithms.

[43]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[44]  Miklós Simonovits,et al.  Random Walks in a Convex Body and an Improved Volume Algorithm , 1993, Random Struct. Algorithms.

[45]  P. Diaconis,et al.  Eigen Analysis for Some Examples of the Metropolis Algorithm , 1992 .

[46]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[47]  M. Dyer Computing the volume of convex bodies : a case where randomness provably helps , 1991 .

[48]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[49]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[50]  M. Karonski Collisions among Random Walks on a Graph , 1993 .

[51]  Zoltán Füredi,et al.  Computing the volume is difficult , 1986, STOC '86.

[52]  P. Tetali Random walks and the effective resistance of networks , 1991 .

[53]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[54]  P. Diaconis Group representations in probability and statistics , 1988 .