Weak Distributivity, A Problem of Von Neumann and the Mystery of Measurability

�DedicatedtoDorothyMaharamStone This article investigates the weak distributivity of Booleano-algebras satisfying the countable chain condition. It addresses primarily the question when such algebras carry ao-additive measure. We use as a starting point the problem of John von Neumann stated in 1937 in the Scottish Book. He asked if the countable chain condition and weak distributivity are sufficient for the existence of such a measure. Subsequent research has shown that the problem has two aspects: one set theoretic and one combinatorial. Recent results provide a complete solution of both the set theoretic and the combinatorial problems. We shall survey the history of von Neumann’s Problem and outline the solution of the set theoretic problem. The technique that we describe owes much to the early work of Dorothy Maharam to whom we dedicate this article. §1. CompleteBooleanalgebrasandweakdistributivity. ABooleanalgebra

[1]  Sabine Koppelberg,et al.  Handbook of Boolean Algebras , 1989 .

[2]  Boban Velickovic,et al.  CCC forcing and splitting reals , 2005 .

[3]  R. Lipsman Abstract harmonic analysis , 1968 .

[4]  T. Jech,et al.  Complete CCC Boolean Algebras, the Order Sequential Topology, and a Problem of Von Neumann , 2003, math/0312473.

[5]  The sequential topology on complete Boolean algebras , 1996, math/9612207.

[6]  James W. Roberts,et al.  Uniformly exhaustive submeasures and nearly additive set functions , 1983 .

[7]  M. Talagrand Maharam’s problem , 2006, math/0601689.

[8]  A. R. D. Mathias Surveys in set theory , 1983 .

[9]  B. Velickovic,et al.  Von Neumann's Problem and Large Cardinals , 2006 .

[10]  D. Maharam,et al.  On Homogeneous Measure Algebras. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Uri Abraham,et al.  Partition properties of ω1 compatible with CH , 1997 .

[12]  Shizuo Kakutani Über die Metrisation der topologischen Gruppen , 1936 .

[13]  D. Maharam An Algebraic Characterization of Measure Algebras , 1947 .

[14]  Wiesław Główczyński Measures on Boolean algebras , 1991 .

[15]  S. Yau Mathematics and its applications , 2002 .

[16]  E. W. Miller A Note on Souslin's Problem , 1943 .

[17]  Gerry Leversha,et al.  Set theory: the third millennium edition , by Thomas Jech. Pp. 769. £77. 2003. ISBN 3 540 44085 2 (Springer). , 2005, The Mathematical Gazette.

[18]  D. A. Vladimirov,et al.  Boolean algebras in analysis , 2002 .

[19]  EXHAUSTIVE ZERO-CONVERGENCE STRUCTURES ON BOOLEAN ALGEBRAS , 1999 .

[20]  R. M. Solovay,et al.  Iterated Cohen extensions and Souslin's problem* , 1971 .

[21]  E. Szpilrajn Remarques sur les fonctions complètement additives d'ensemble et sur les ensembles jouissant de la propriété de Baire , 1934 .

[22]  S. Banach,et al.  Sur une généralisation du problème de la mesure , 1929 .

[24]  J. Neumann,et al.  Continuous Geometry. , 1936, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. K. Hunter,et al.  Measure Theory , 2007 .

[26]  Thomas Jech,et al.  More game-theoretic properties of boolean algebras , 1984, Ann. Pure Appl. Log..

[27]  S. Tennenbaum,et al.  Souslin'S problem. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Todorcevic A problem of von Neumann and Maharam about algebras supporting continuous submeasures , 2004 .

[29]  Tomáš Jech,et al.  Non-provability of Souslin's hypothesis , 1967 .