Parameter identification in a structured population model

We study parameter identification problems in a structured population model without mutations. Given measurements of the total population size or critical points of the population, we aim to recover its growth rate, death rate or initial distribution. We present uniqueness results under suitable assumptions and present counterexamples when these assumptions are violated. Our results a supplemented by numerical studies, either based on Tikhonov regularization or the use of explicit reconstruction formulas.

[1]  Y. Y. Belov,et al.  Inverse Problems for Partial Differential Equations , 2002 .

[2]  Herbert Egger,et al.  Numerical methods for parameter identification in stationary radiative transfer , 2013, Comput. Optim. Appl..

[3]  A. Bakushinsky,et al.  Iterative Methods for Approximate Solution of Inverse Problems , 2005 .

[4]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[5]  R. Ferrière,et al.  From Individual Stochastic Processes to Macroscopic Models in Adaptive Evolution , 2008 .

[6]  György Barabás,et al.  When the exception becomes the rule: the disappearance of limiting similarity in the Lotka-Volterra model. , 2009, Journal of theoretical biology.

[7]  A. Lorz,et al.  Dispersal homogenizes communities via immigration even at low rates in a simplified synthetic bacterial metacommunity , 2019, Nature Communications.

[8]  Herbert Egger,et al.  Identification of Chemotaxis Models with Volume-Filling , 2014, SIAM J. Appl. Math..

[9]  Barbara Kaltenbacher,et al.  Convergence of projected iterative regularization methods for nonlinear problems with smooth solutions , 2006 .

[10]  U. Dieckmann,et al.  The Dynamical Theory of Coevolution : A Derivation from Stochastic Ecological Processes , 1996 .

[11]  S. Mischler,et al.  On selection dynamics for continuous structured populations , 2008 .

[12]  J. Roughgarden,et al.  Theory of Population Genetics and Evolutionary Ecology , 1979 .

[13]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[14]  B. Perthame,et al.  Long-term behaviour of phenotypically structured models , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  P. Jabin,et al.  On selection dynamics for competitive interactions , 2011, Journal of mathematical biology.

[16]  Barbara Kaltenbacher,et al.  Iterative Regularization Methods for Nonlinear Ill-Posed Problems , 2008, Radon Series on Computational and Applied Mathematics.

[17]  Pablo Chamoso,et al.  UAVs Applied to the Counting and Monitoring of Animals , 2014, ISAmI.

[18]  B. Perthame,et al.  Modeling the Effects of Space Structure and Combination Therapies on Phenotypic Heterogeneity and Drug Resistance in Solid Tumors , 2014, Bulletin of Mathematical Biology.

[19]  J. Roughgarden Theory of Population Genetics and Evolutionary Ecology: An Introduction , 1995 .

[20]  W. D. de Vos,et al.  A simple and fast method for determining colony forming units , 2008, Letters in applied microbiology.

[21]  R. Ferrière,et al.  Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. , 2006, Theoretical population biology.

[22]  B. Perthame,et al.  Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations , 2010, 1011.1768.