Connectivity of Inhomogeneous Random K-Out Graphs

We propose inhomogeneous random K-out graphs <inline-formula> <tex-math notation="LaTeX">$\mathbb {H}(n; {\mu }, {K}_{n})$ </tex-math></inline-formula>, where each of the <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> nodes is assigned to one of <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula> classes independently with a probability distribution <inline-formula> <tex-math notation="LaTeX">${\mu } = \{\mu _{1}, \ldots, \mu _{r}\}$ </tex-math></inline-formula>. In particular, each node is classified as class <inline-formula> <tex-math notation="LaTeX">$i$ </tex-math></inline-formula> with probability <inline-formula> <tex-math notation="LaTeX">$\mu _{i}>0$ </tex-math></inline-formula>, independently. With <inline-formula> <tex-math notation="LaTeX">${K}_{n} = \left ({K_{1,n}, \ldots, K_{r,n} }\right)$ </tex-math></inline-formula>, each class <inline-formula> <tex-math notation="LaTeX">$i$ </tex-math></inline-formula> node <italic>selects</italic> <inline-formula> <tex-math notation="LaTeX">$K_{i,n}$ </tex-math></inline-formula> distinct nodes uniformly at random from among all other nodes. A pair of nodes are adjacent in <inline-formula> <tex-math notation="LaTeX">$\mathbb {H}(n; {\mu }, {K}_{n})$ </tex-math></inline-formula> if at least one selects the other. Without loss of generality, we assume that <inline-formula> <tex-math notation="LaTeX">$K_{1,n} \leq K_{2,n} \leq \ldots \leq K_{r,n}$ </tex-math></inline-formula>. Earlier results on <italic>homogeneous</italic> random K-out graphs <inline-formula> <tex-math notation="LaTeX">$\mathbb {H}(n; K_{n})$ </tex-math></inline-formula>, where all nodes select the same number <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> of other nodes, reveal that <inline-formula> <tex-math notation="LaTeX">$\mathbb {H}(n; K_{n})$ </tex-math></inline-formula> is connected with high probability (whp) if <inline-formula> <tex-math notation="LaTeX">$K_{n} \geq 2$ </tex-math></inline-formula> which implies that <inline-formula> <tex-math notation="LaTeX">$\mathbb {H}(n; {\mu }, {K}_{n})$ </tex-math></inline-formula> is connected whp if <inline-formula> <tex-math notation="LaTeX">$K_{1,n} \geq 2$ </tex-math></inline-formula>. In this paper, we investigate the connectivity of inhomogeneous random K-out graphs <inline-formula> <tex-math notation="LaTeX">$\mathbb {H}(n; {\mu }, {K}_{n})$ </tex-math></inline-formula> for the special case when <inline-formula> <tex-math notation="LaTeX">$K_{1,n}=1$ </tex-math></inline-formula>, i.e., when each class 1 node selects only one other node. We show that <inline-formula> <tex-math notation="LaTeX">$\mathbb {H}\left ({n;{\mu },{K}_{n}}\right)$ </tex-math></inline-formula> is connected whp if <inline-formula> <tex-math notation="LaTeX">$K_{r,n}$ </tex-math></inline-formula> is chosen such that <inline-formula> <tex-math notation="LaTeX">$\lim _{n \to \infty } K_{r,n} = \infty $ </tex-math></inline-formula>. However, any bounded choice of the sequence <inline-formula> <tex-math notation="LaTeX">$K_{r,n}$ </tex-math></inline-formula> gives a positive probability of <inline-formula> <tex-math notation="LaTeX">$\mathbb {H}\left ({n;{\mu },{K}_{n}}\right)$ </tex-math></inline-formula> being asymptotically <italic>not</italic> connected in the limit of large <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>. Simulation results are provided to validate our results in the finite node regime.

[1]  Mohsen Guizani,et al.  A framework for a distributed key management scheme in heterogeneous wireless sensor networks , 2008, IEEE Trans. Wirel. Commun..

[2]  Luc Devroye,et al.  Connectivity of inhomogeneous random graphs , 2012, Random Struct. Algorithms.

[3]  Jun Zhao,et al.  $k$ -Connectivity in Random Key Graphs With Unreliable Links , 2015, IEEE Transactions on Information Theory.

[4]  Armand M. Makowski,et al.  Zero–One Laws for Connectivity in Random Key Graphs , 2009, IEEE Transactions on Information Theory.

[5]  Dawn Xiaodong Song,et al.  Random key predistribution schemes for sensor networks , 2003, 2003 Symposium on Security and Privacy, 2003..

[6]  Yeh-Ching Chung,et al.  Heterogeneous Wireless Sensor Network Deployment and Topology Control Based on Irregular Sensor Model , 2007, GPC.

[7]  Mohsen Guizani,et al.  An effective key management scheme for heterogeneous sensor networks , 2007, Ad Hoc Networks.

[8]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[9]  Andrew Miller,et al.  Dandelion++: Lightweight Cryptocurrency Networking with Formal Anonymity Guarantees , 2018, SIGMETRICS.

[10]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[11]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[12]  Virgil D. Gligor,et al.  Toward $k$ -Connectivity of the Random Graph Induced by a Pairwise Key Predistribution Scheme With Unreliable Links , 2014, IEEE Transactions on Information Theory.

[13]  Osman Yagan,et al.  Connectivity of Wireless Sensor Networks Secured by the Heterogeneous Random Pairwise Key Predistribution Scheme , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[14]  Jun Zhao,et al.  $k$ -Connectivity in Random $K$ -Out Graphs Intersecting Erdős-Rényi Graphs , 2017, IEEE Transactions on Information Theory.

[15]  Armand M. Makowski,et al.  On the Connectivity of Sensor Networks Under Random Pairwise Key Predistribution , 2013, IEEE Transactions on Information Theory.

[16]  Armand M. Makowski,et al.  On the scalability of the random pairwise key predistribution scheme: Gradual deployment and key ring sizes , 2013, Perform. Evaluation.

[17]  Osman Yagan Zero-One Laws for Connectivity in Inhomogeneous Random Key Graphs , 2016, IEEE Transactions on Information Theory.

[18]  Osman Yağan,et al.  On the Connectivity of Inhomogeneous Random K-out Graphs , 2018, 2019 IEEE International Symposium on Information Theory (ISIT).

[19]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[20]  Edoardo M. Airoldi,et al.  A Survey of Statistical Network Models , 2009, Found. Trends Mach. Learn..

[21]  Jun Zhao,et al.  On Connectivity and Robustness in Random Intersection Graphs , 2017, IEEE Transactions on Automatic Control.

[22]  A. Frieze,et al.  On the connectivity of randomm-orientable graphs and digraphs , 1982 .

[23]  Osman Yagan,et al.  Tight Bounds for Connectivity of Random K-out Graphs , 2020, ArXiv.

[24]  Makoto Takizawa,et al.  A Survey on Clustering Algorithms for Wireless Sensor Networks , 2010, 2010 13th International Conference on Network-Based Information Systems.

[25]  S H Strogatz,et al.  Random graph models of social networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Katarzyna Rybarczyk,et al.  Sharp Threshold Functions for Random Intersection Graphs via a Coupling Method , 2011, Electron. J. Comb..

[27]  Suresh Singh,et al.  Exploiting heterogeneity in sensor networks , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[28]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.