DNA minicircles connected via G-quadruplex interaction modules.

G-quadruplexes are becoming reliable alternative interaction modules for the construction of DNA nanoarchitectures due to their prompt inducibility by salts. In this Full Paper, we report the design and synthesis of two different DNA minicircles equipped with G-rich appendixes that can self-hybridize into a G-quadruplex, which acts as a DNA recruiter and glue. Both minicircles, one containing a hairpin-like G-rich region and the other an open tuning-fork-like G-rich region, have the potential to form DNA G-nanoconstructs but only the tuning-fork minicircle does so. Incubation of the tuning-fork minicircle with Na(+) and Ni(2+) results in the formation of minicircle dimers, while K(+) and Sr(2+) unexpectedly induce the formation of multimers. Moreover, a catenated DNA nanoconstruct is obtained when the components of the hairpin minicircle are incubated with K(+) or Na(+) and assembled in a stepwise sequence. All nanoconstructs are visualized by atomic force microscopy.

[1]  F. Simmel,et al.  DNA-based nanodevices , 2007 .

[2]  R. Fahlman,et al.  Cation-regulated self-association of "synapsable" DNA duplexes. , 1998, Journal of molecular biology.

[3]  E. Henderson,et al.  G-wires: self-assembly of a telomeric oligonucleotide, d(GGGGTTGGGG), into large superstructures. , 1994, Biochemistry.

[4]  M. Maeda,et al.  Reversible photoswitching of a G-quadruplex. , 2009, Angewandte Chemie.

[5]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[6]  V. Scaria,et al.  Inhibition of translation in living eukaryotic cells by an RNA G-quadruplex motif. , 2008, RNA.

[7]  Itamar Willner,et al.  A polycatenated DNA scaffold for the one-step assembly of hierarchical nanostructures , 2008, Proceedings of the National Academy of Sciences.

[8]  T. Schmidt,et al.  Polyamid‐Stützen für DNA‐Architekturen , 2007 .

[9]  Stephen Neidle,et al.  Quadruplex nucleic acids. , 2006 .

[10]  A. Heckel,et al.  Light-dependent RNA interference with nucleobase-caged siRNAs. , 2007, RNA.

[11]  Udo Feldkamp,et al.  Rationaler Entwurf von DNA‐Nanoarchitekturen , 2006 .

[12]  C. Mirkin,et al.  G-quartet-induced nanoparticle assembly. , 2005, Journal of the American Chemical Society.

[13]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[14]  S. Balasubramanian,et al.  Tetramethylpyridiniumporphyrazines--a new class of G-quadruplex inducing and stabilising ligands. , 2006, Chemical communications.

[15]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[16]  Alexander Heckel,et al.  Pyrrole/imidazole-polyamide anchors for DNA tertiary interactions. , 2009, Small.

[17]  Shankar Balasubramanian,et al.  An RNA G-quadruplex in the 5' UTR of the NRAS proto-oncogene modulates translation. , 2007, Nature chemical biology.

[18]  Jeremy K M Sanders,et al.  Synthesis and G-quadruplex binding studies of new 4-N-methylpyridinium porphyrins. , 2006, Organic & biomolecular chemistry.

[19]  T. Schmidt,et al.  DNA‐Ringe mit Einzelstrangdomänen zur vielseitigen Funktionalisierung , 2008 .

[20]  K. Nishigaki,et al.  Structural characterization of ultra-stable higher-ordered aggregates generated by novel guanine-rich DNA sequences. , 2005, Gene.

[21]  J. Vesenka,et al.  A new DNA nanostructure, the G-wire, imaged by scanning probe microscopy. , 1995, Nucleic acids research.

[22]  C. Niemeyer,et al.  Supramolekulare Nanoringe aus Streptavidin und DNA , 2000 .

[23]  E. Protozanova,et al.  Frayed wires: a thermally stable form of DNA with two distinct structural domains. , 1996, Biochemistry.

[24]  R. Harrington,et al.  Kinked DNA , 1997, Nature.

[25]  A. Chan,et al.  G-quadruplex as a new class of structural entities for directing the formation of circular oligodeoxyribonucleotides. , 2002, Chemical communications.

[26]  Daniela Rhodes,et al.  G-quadruplex structures: in vivo evidence and function. , 2009, Trends in cell biology.

[27]  M. Bansal,et al.  Hairpin and parallel quartet structures for telomeric sequences. , 1992, Nucleic acids research.

[28]  Hao Yan,et al.  Designer DNA nanoarchitectures. , 2009, Biochemistry.

[29]  Dipankar Sen,et al.  Duplex Pinching: A Structural Switch Suitable for Contractile DNA Nanoconstructions , 2003 .

[30]  S. Balasubramanian,et al.  Ligand-driven G-quadruplex conformational switching by using an unusual mode of interaction. , 2007, Angewandte Chemie.

[31]  Itamar Willner,et al.  DNA-based machines. , 2006, Organic & biomolecular chemistry.