On the correlation of pseudorandom numbers generated by inversive methods

Abstract.We introduce two new types of inversive generators for pseudorandom numbers. These new methods offer several advantages over the conventional inversive generator. For instance, we establish good correlation properties of our generators that cannot be obtained for the conventional inversive generator with current methods. A new bound on character sums for finite fields is the essential technical tool for this work.

[1]  Harald Niederreiter,et al.  Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators , 2000 .

[2]  Wun-Seng Chou The Period Lengths of Inversive Pseudorandom Vector Generations , 1995 .

[3]  H. Stichtenoth,et al.  Topics in Geometry, Coding Theory and Cryptography , 2010 .

[4]  Jürgen Lehn,et al.  A non-linear congruential pseudo random number generator , 1986 .

[5]  Stefan Wegenkittl,et al.  A survey of quadratic and inversive congruential pseudorandom numbers , 1998 .

[6]  Harald Niederreiter,et al.  Digital inversive pseudorandom numbers , 1994, TOMC.

[7]  Rudolf Lide,et al.  Finite fields , 1983 .

[8]  Fred J. Hickernell,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .

[9]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[10]  Oscar Moreno,et al.  Exponential sums and Goppa codes. I , 1991 .

[11]  András Sárközy,et al.  On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol , 1997 .

[12]  András Sárközy,et al.  On the measures of pseudorandomness of binary sequences , 2003, Discret. Math..

[13]  Igor E. Shparlinski,et al.  Recent Advances in the Theory of Nonlinear Pseudorandom Number Generators , 2002 .

[14]  Igor E. Shparlinski,et al.  On the Distribution of Pseudorandom Numbers and Vectors Generated by Inversive Methods , 2000, Applicable Algebra in Engineering, Communication and Computing.

[15]  András Sárközy,et al.  On pseudorandom [0, 1 and binary sequences , 2007 .

[16]  Harald Niederreiter,et al.  Pseudorandom vector generation by the inversive method , 1994, TOMC.

[17]  András Sárközy,et al.  On Finite Pseudorandom Binary Sequences: II. The Champernowne, Rudin–Shapiro, and Thue–Morse Sequences, A Further Construction , 1998 .