Worst-case optimal hidden-surface removal

An O(<italic>n</italic><supscrpt>2</supscrpt>) hidden-surface removal algorithm is shown. This is an improvement over the previous best worst-case performance of O(<italic>n</italic><supscrpt>2</supscrpt> log <italic>n</italic>). It has been established that the hidden-line and hidden-surface problems have an &OHgr;(<italic>n</italic><supscrpt>2</supscrpt>) worst-case lower bound, so the algorithm is optimal. However, the algorithm is not output-size sensitive. Two corollaries to the result are (1) hidden-lines can be removed in optimal O(<italic>n</italic><supscrpt>2</supscrpt>) time, and (2) the portion of a 3-D polyhedron visible from a given interior point is constructible in optimal O(<italic>n</italic><supscrpt>2</supscrpt>) time.

[1]  P. Widmayer,et al.  A worst-case efficient algorithm for hidden-line elimination † , 1985 .

[2]  Leonidas J. Guibas,et al.  Computing convolutions by reciprocal search , 1986, SCG '86.

[3]  Raimund Seidel,et al.  Constructing arrangements of lines and hyperplanes with applications , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[4]  Leonidas J. Guibas,et al.  Topologically sweeping an arrangement , 1986, STOC '86.

[5]  Bernard Chazelle,et al.  The power of geometric duality , 1985, BIT Comput. Sci. Sect..

[6]  Leonidas J. Guibas,et al.  The power of geometric duality , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[7]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[8]  Raimund Seidel,et al.  Constructing Arrangements of Lines and Hyperplanes with Applications , 1986, SIAM J. Comput..

[9]  Otto Nurmi A fast line-sweep algorithm for hidden line elimination , 1985, BIT Comput. Sci. Sect..

[10]  Ferenc Dévai,et al.  Quadratic bounds for hidden line elimination , 1986, SCG '86.

[11]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[12]  Alfred Schmitt,et al.  Time and Space Bounds for Hidden Line and Hidden Surface Algorithms , 1981, Eurographics.

[13]  David E. Muller,et al.  Finding the Intersection of two Convex Polyhedra , 1978, Theor. Comput. Sci..