MALDI-TOF MS in microbiological diagnostics—identification of microorganisms and beyond (mini review)

Few developments in microbiological diagnostics have had such a rapid impact on species level identification of microorganisms as matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Conventional differentiation methods rely on biochemical criteria and require additional pre-testing and lengthy incubation procedures. In comparison, MALDI-TOF MS can identify bacteria and yeast within minutes directly from colonies grown on culture plates. This radically new, methodically simple approach profoundly reduces the cost of consumables and time spent on diagnostics. The reliability and accuracy of the method have been demonstrated in numerous studies and different systems are already commercially available. Novel applications of the system besides microbial species level identification are also being explored. This includes identification of pathogens from positive blood cultures or directly from patient samples, such as urine. Currently, intriguing MALDI-TOF MS developments are being made regarding the phenotypic detection of certain antibiotic resistance mechanisms, e.g., β-lactamases and carbapenemases. This mini review provides an overview of the literature in the field and also includes our own data and experiences gathered from over 4 years of routine MALDI-TOF MS use in a university hospital’s microbiological diagnostics facility.

[1]  A. Fox,et al.  Optimisation of intact cell MALDI method for fingerprinting of methicillin-resistant Staphylococcus aureus. , 2005, Journal of microbiological methods.

[2]  P. Demirev,et al.  Microorganism identification by mass spectrometry and protein database searches. , 1999, Analytical chemistry.

[3]  R. Reinhardt,et al.  Classification and Identification of Bacteria by Mass Spectrometry and Computational Analysis , 2008, PloS one.

[4]  U. Hipler,et al.  Identification of dermatophyte species causing onychomycosis and tinea pedis by MALDI‐TOF mass spectrometry , 2008, Experimental dermatology.

[5]  M. Kostrzewa,et al.  Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 2011, Journal of medical microbiology.

[6]  J. Guarro,et al.  Use of mass spectrometry to identify clinical Fusarium isolates. , 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[7]  L. Ferreira,et al.  Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method. , 2011, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[8]  M. Karas,et al.  Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. , 1990, Methods in enzymology.

[9]  Karl Wegscheider,et al.  Rapid Identification of Bacteria from Positive Blood Culture Bottles by Use of Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry Fingerprinting , 2010, Journal of Clinical Microbiology.

[10]  T. Maier,et al.  Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. , 2011, The Journal of molecular diagnostics : JMD.

[11]  Ruifu Yang,et al.  Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 2002, Analytical chemistry.

[12]  J. Hrabák,et al.  Carbapenemase Activity Detection by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry , 2011, Journal of Clinical Microbiology.

[13]  R. Dieckmann,et al.  Rapid Screening of Epidemiologically Important Salmonella enterica subsp. enterica Serovars by Whole-Cell Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry , 2011, Applied and Environmental Microbiology.

[14]  P. Demirev,et al.  Characterization of intact microorganisms by MALDI mass spectrometry. , 2001, Mass spectrometry reviews.

[15]  P. Berche,et al.  Real-Time Identification of Bacteria and Candida Species in Positive Blood Culture Broths by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry , 2010, Journal of Clinical Microbiology.

[16]  M. Millar,et al.  Improved Performance of Bacterium and Yeast Identification by a Commercial Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System in the Clinical Microbiology Laboratory , 2011, Journal of Clinical Microbiology.

[17]  P. Vandamme,et al.  Accuracy of the API Campy system, the Vitek 2 Neisseria-Haemophilus card and matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of Campylobacter and related organisms. , 2011, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[18]  S. N. Davey,et al.  The rapid identification of intact microorganisms using mass spectrometry , 1996, Nature Biotechnology.

[19]  C. Fenselau,et al.  Characterization of protein biomarkers desorbed by MALDI from whole fungal cells. , 2001, Analytical chemistry.

[20]  Martin Aepfelbacher,et al.  MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. , 2011, International journal of medical microbiology : IJMM.

[21]  K. Voorhees,et al.  Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. , 1996, Rapid communications in mass spectrometry : RCM.

[22]  U. Eigner,et al.  Performance of a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory. , 2009, Clinical laboratory.

[23]  P. François,et al.  Comparison of Two Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Methods with Conventional Phenotypic Identification for Routine Identification of Bacteria to the Species Level , 2010, Journal of Clinical Microbiology.

[24]  M. Fredriksson-Ahomaa,et al.  Rapid species specific identification and subtyping of Yersinia enterocolitica by MALDI-TOF mass spectrometry. , 2011, Journal of microbiological methods.

[25]  D. Raoult,et al.  Direct Identification of Bacteria in Positive Blood Culture Bottles by Matrix-Assisted Laser Desorption Ionisation Time-of-Flight Mass Spectrometry , 2009, PloS one.

[26]  P. Ross,et al.  Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 1996, Rapid communications in mass spectrometry : RCM.

[27]  Trinad Chakraborty,et al.  Rapid Identification and Typing of Listeria Species by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry , 2008, Applied and Environmental Microbiology.

[28]  D. Raoult,et al.  Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[29]  M. Kostrzewa,et al.  Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Functional Assay for Rapid Detection of Resistance against β-Lactam Antibiotics , 2011, Journal of Clinical Microbiology.

[30]  Kristin H. Jarman,et al.  An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. , 2000, Analytical chemistry.

[31]  E. Claas,et al.  High-Throughput Identification of Bacteria and Yeast by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Conventional Medical Microbiology Laboratories , 2010, Journal of Clinical Microbiology.

[32]  T. Maier,et al.  Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the study of Helicobacter pylori. , 2010, Rapid communications in mass spectrometry : RCM.

[33]  A. Mellmann,et al.  Evaluation of Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry in Comparison to 16S rRNA Gene Sequencing for Species Identification of Nonfermenting Bacteria , 2008, Journal of Clinical Microbiology.

[34]  G. S. Chhatwal,et al.  Rapid Identification of Viridans Streptococci by Mass Spectrometric Discrimination , 2007, Journal of Clinical Microbiology.

[35]  D. Beezhold,et al.  Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. , 2008, Analytical biochemistry.

[36]  P. Dawyndt,et al.  Matrix-assisted laser desorption ionisation-time-of of-flight mass spectrometry of intact cells allows rapid identification of Burkholderia cepacia complex. , 2008, Journal of microbiological methods.

[37]  Markus Kostrzewa,et al.  Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionization-time-of-flight mass spectrometry (MALDI-TOF MS). , 2008, Anaerobe.

[38]  L. Ferreira,et al.  Direct Identification of Urinary Tract Pathogens from Urine Samples by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry , 2010, Journal of Clinical Microbiology.

[39]  D. Beezhold,et al.  Discrimination of Penicillium isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. , 2008, Rapid communications in mass spectrometry : RCM.

[40]  K. Schønning,et al.  Using MALDI-TOF mass spectrometry as a rapid and accurate diagnostic tool in infective endocarditis: A case report of a patient with mitral valve infective endocarditis caused by Abiotrophia defectiva , 2011, Scandinavian journal of infectious diseases.

[41]  A. Urbani,et al.  MALDI-TOF mass spectrometry proteomic phenotyping of clinically relevant fungi. , 2011, Molecular bioSystems.

[42]  M. Erhard,et al.  Rapid Classification and Identification of Salmonellae at the Species and Subspecies Levels by Whole-Cell Matrix-Assisted Laser Desorption Ionization – Time of Flight Mass Spectrometry † , 2008 .

[43]  H. Seifert,et al.  Identification and discrimination of Staphylococcus aureus strains using matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry , 2002, Proteomics.

[44]  L. Dijkshoorn,et al.  Rapid and accurate identification of genomic species from the Acinetobacter baumannii (Ab) group by MALDI-TOF MS. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[45]  P. Murray,et al.  Rapid Identification of Bacteria in Positive Blood Culture Broths by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry , 2009, Journal of Clinical Microbiology.

[46]  T. Maier,et al.  Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria. , 2009, The Journal of molecular diagnostics : JMD.

[47]  Jane Tang,et al.  Identification of Mycobacteria by Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry , 2006, Journal of Clinical Microbiology.

[48]  T. Maier,et al.  Identification of Francisella tularensis by Whole-Cell Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Fast, Reliable, Robust, and Cost-Effective Differentiation on Species and Subspecies Levels , 2010, Journal of Clinical Microbiology.

[49]  M. Roberts,et al.  Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. , 2003, Clinica chimica acta; international journal of clinical chemistry.

[50]  G Greub,et al.  Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Bacterial Strains Routinely Isolated in a Clinical Microbiology Laboratory , 2010, Journal of Clinical Microbiology.

[51]  V. Govorun,et al.  Strains Neisseria Gonorrhoeae Clinical Resistance and Susceptibility Profile of Relation between Genetic Markers of Drug , 2007 .

[52]  S. Zimmermann,et al.  Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry To Detect Carbapenem Resistance within 1 to 2.5 Hours , 2011, Journal of Clinical Microbiology.

[53]  T. McKenna,et al.  The discriminatory power of MALDI-TOF mass spectrometry to differentiate between isogenic teicoplanin-susceptible and teicoplanin-resistant strains of methicillin-resistant Staphylococcus aureus. , 2006, FEMS microbiology letters.

[54]  C. Fenselau,et al.  Identification of bacteria using mass spectrometry , 1975 .

[55]  A. Hoerauf,et al.  Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Fast and Reliable Identification of Clinical Yeast Isolates , 2009, Journal of Clinical Microbiology.

[56]  P. Ross,et al.  Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. , 1996, Rapid communications in mass spectrometry : RCM.

[57]  M. Kostrzewa,et al.  Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[58]  A. Bizzini,et al.  Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Direct Bacterial Identification from Positive Blood Culture Pellets , 2010, Journal of Clinical Microbiology.

[59]  M. Kostrzewa,et al.  Identification of Streptococcus agalactiae Isolates from Various Phylogenetic Lineages by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry , 2009, Journal of Clinical Microbiology.