Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model

[1]  A. Hogg,et al.  The energetics of a collapsing meridional overturning circulation , 2013 .

[2]  Baylor Fox-Kemper,et al.  Can Large Eddy Simulation Techniques Improve Mesoscale Rich Ocean Models , 2013 .

[3]  K. Polzin,et al.  Internal waves and turbulence in the Antarctic Circumpolar Current , 2013 .

[4]  Darran G. Furnival,et al.  Global Observations of Ocean-Bottom Subinertial Current Dissipation , 2013 .

[5]  Tomohiro Nakamura,et al.  Processes of breaking of large‐amplitude unsteady lee waves leading to turbulence , 2013 .

[6]  Alistair Adcroft,et al.  Routes to energy dissipation for geostrophic flows in the Southern Ocean , 2012, Nature Geoscience.

[7]  Carsten Eden,et al.  An estimate of Lorenz energy cycle for the world ocean based on the 1/10º STORM/NCEP simulation , 2012 .

[8]  C. Eriksen,et al.  Dissipation of Turbulent Kinetic Energy Inferred from Seagliders: An Application to the Eastern Nordic Seas Overflows , 2012 .

[9]  Andrew J. Watson,et al.  Turbulence and diapycnal mixing in Drake Passage , 2012 .

[10]  F. Qiao,et al.  Comparison between vertical shear mixing and surface wave-induced mixing in the extratropical ocean , 2012 .

[11]  A. Wallcraft,et al.  An evaluation of the barotropic and internal tides in a high‐resolution global ocean circulation model , 2012 .

[12]  C. Wunsch,et al.  On the Wind Power Input to the Ocean General Circulation , 2012 .

[13]  J. A. Saenz,et al.  Mechanical power input from buoyancy and wind to the circulation in an ocean model , 2012 .

[14]  E. Kunze,et al.  Turbulent Mixing and Exchange with Interior Waters on Sloping Boundaries , 2012 .

[15]  Xiaoming Zhai,et al.  The Combined Effect of Tidally and Eddy-Driven Diapycnal Mixing on the Large-Scale Ocean Circulation , 2012 .

[16]  C. Wright,et al.  Bottom dissipation of subinertial currents at the Atlantic zonal boundaries , 2012 .

[17]  LuAnne Thompson,et al.  Application of Thin-Plate Splines in Two Dimensions to Oceanographic Tracer Data , 2011 .

[18]  John A. Goff,et al.  Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography , 2011 .

[19]  J. Richman,et al.  Energetics of a global ocean circulation model compared to observations , 2011 .

[20]  W. Dewar,et al.  Submesoscale generation by boundaries , 2011 .

[21]  Raffaele Ferrari,et al.  Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean , 2011 .

[22]  H. Aiki,et al.  Maintenance of the mean kinetic energy in the global ocean by the barotropic and baroclinic energy routes: the roles of JEBAR and Ekman dynamics , 2011 .

[23]  Zhenya Song,et al.  Improvement of MOM4 by including surface wave-induced vertical mixing , 2011 .

[24]  John A. Goff,et al.  Global prediction of abyssal hill root‐mean‐square heights from small‐scale altimetric gravity variability , 2010 .

[25]  R. Tailleux Entropy versus APE production: On the buoyancy power input in the oceans energy cycle , 2010 .

[26]  F. Qiao,et al.  Application of wave-induced vertical mixing to the K profile parameterization scheme , 2010 .

[27]  J. R. Taylor,et al.  Reduction of the usable wind‐work on the general circulation by forced symmetric instability , 2010 .

[28]  D. Marshall,et al.  Significant sink of ocean-eddy energy near western boundaries , 2010 .

[29]  R. Ferrari,et al.  Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Theory , 2010 .

[30]  Steven A. Orszag,et al.  Large Eddy Simulation of Complex Engineering and Geophysical Flows , 2010 .

[31]  E. Joseph Metzger,et al.  Concurrent Simulation of the Eddying General Circulation and Tides in a Global Ocean Model , 2010 .

[32]  J. Goff,et al.  Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness , 2010 .

[33]  W. Dewar,et al.  Topographic inviscid dissipation of balanced flow , 2010 .

[34]  R. Ferrari,et al.  The distribution of eddy kinetic and potential energies in the global ocean , 2010 .

[35]  R. Scott,et al.  An update on the wind power input to the surface geostrophic flow of the World Ocean , 2009 .

[36]  Ayon Sen,et al.  Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models , 2009 .

[37]  K. Polzin An abyssal recipe , 2009 .

[38]  G. Madec,et al.  A conservative leapfrog time stepping method , 2009 .

[39]  K. Polzin Mesoscale Eddy–Internal Wave Coupling. Part I: Symmetry, Wave Capture, and Results from the Mid-Ocean Dynamics Experiment , 2008 .

[40]  T. Hibiya,et al.  Model-predicted distribution of wind-induced internal wave energy in the world's oceans , 2008 .

[41]  D. Marshall,et al.  A Conjecture on the Role of Bottom-Enhanced Diapycnal Mixing in the Parameterization of Geostrophic Eddies , 2008 .

[42]  Marika M. Holland,et al.  Ocean viscosity and climate , 2008 .

[43]  Ayon Sen,et al.  Global energy dissipation rate of deep‐ocean low‐frequency flows by quadratic bottom boundary layer drag: Computations from current‐meter data , 2008 .

[44]  B. Arbic,et al.  On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies , 2008 .

[45]  J. McWilliams,et al.  Routes to Dissipation in the Ocean : The 2 D / 3 D Turbulence Conundrum , 2007 .

[46]  L. S. Laurent,et al.  Estimates of Power Consumed by Mixing in the Ocean Interior , 2006 .

[47]  A. Thurnherr,et al.  Global Abyssal Mixing Inferred from Lowered ADCP Shear and CTD Strain Profiles , 2006 .

[48]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[49]  R. Slater,et al.  The Energetics of Ocean Heat Transport , 2005 .

[50]  S. Garner A Topographic Drag Closure Built on an Analytical Base Flux , 2005 .

[51]  H. Hurlburt,et al.  Convergence of Laplacian diffusion versus resolution of an ocean model , 2005 .

[52]  R. Hallberg A thermobaric instability of Lagrangian vertical coordinate ocean models , 2005 .

[53]  R. Hallberg,et al.  The accuracy of surface elevations in forward global barotropic and baroclinic tide models , 2004 .

[54]  G. Flierl,et al.  Baroclinically Unstable Geostrophic Turbulence in the Limits of Strong and Weak Bottom Ekman Friction: Application to Midocean Eddies , 2004 .

[55]  Stephen M. Griffies,et al.  Fundamentals of Ocean Climate Models , 2004 .

[56]  Wei Wang,et al.  Wind Energy Input to the Surface Waves , 2004 .

[57]  Gary D. Egbert,et al.  Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum , 2004 .

[58]  J. Pedlosky,et al.  Wind-driven barotropic gyre I : circulation control by eddy vorticity fluxes to an enhanced removal region , 2004 .

[59]  M. Visbeck,et al.  Widespread Intense Turbulent Mixing in the Southern Ocean , 2004, Science.

[60]  Carl Wunsch,et al.  VERTICAL MIXING, ENERGY, AND THE GENERAL CIRCULATION OF THE OCEANS , 2004 .

[61]  G. Halliwell,et al.  Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM) , 2004 .

[62]  Eric P. Chassignet,et al.  North Atlantic Simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the Vertical Coordinate Choice, Reference Pressure, and Thermobaricity , 2003 .

[63]  M. Alford,et al.  Improved global maps and 54‐year history of wind‐work on ocean inertial motions , 2003 .

[64]  L. St. Laurent,et al.  Estimating tidally driven mixing in the deep ocean , 2002 .

[65]  Toshiyuki Hibiya,et al.  Global estimates of the wind‐induced energy flux to inertial motions in the surface mixed layer , 2002 .

[66]  Melinda S. Peng,et al.  Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for Ocean Models , 2002 .

[67]  Rainer Bleck,et al.  An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .

[68]  J. Toole,et al.  Buoyancy Forcing by Turbulence above Rough Topography in the Abyssal Brazil Basin , 2001 .

[69]  L. St. Laurent,et al.  Parameterizing tidal dissipation over rough topography , 2001 .

[70]  D. Webb,et al.  Oceanography: Vertical mixing in the ocean , 2001, Nature.

[71]  Jean-Marc Molines,et al.  Circulation characteristics in three eddy-permitting models of the North Atlantic , 2001 .

[72]  J. Toole,et al.  Evidence for enhanced mixing over rough topography in the abyssal ocean , 2000, Nature.

[73]  C. E. Neuzil,et al.  Osmotic generation of ‘anomalous’ fluid pressures in geological environments , 2000, Nature.

[74]  H. Hasumi,et al.  Developments in ocean climate modelling , 2000 .

[75]  John K. Dukowicz,et al.  Inclusion of Thermobaricity in Isopycnic-Coordinate Ocean Models , 1999 .

[76]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[77]  Carl Wunsch,et al.  The Work Done by the Wind on the Oceanic General Circulation , 1998 .

[78]  J. M. Toole,et al.  Spatial Variability of Turbulent Mixing in the Abyssal Ocean , 1997, Science.

[79]  Ross J. Murray,et al.  Explicit Generation of Orthogonal Grids for Ocean Models , 1996 .

[80]  Eric A. D'Asaro,et al.  Available potential energy and mixing in density-stratified fluids , 1995, Journal of Fluid Mechanics.

[81]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[82]  L. A. Anderson,et al.  Estimates of the energy cycle of the oceans , 1994 .

[83]  A. Treguier Kinetic Energy Analysis of an Eddy Resolving, Primitive Equation Model of the North Atlantic , 1992 .

[84]  Thomas H. Jordan,et al.  Stochastic Modeling of Seafloor Morphology: Inversion of Sea Beam Data for Second-Order Statistics , 1988 .

[85]  T. H. Bell,et al.  Topographically generated internal waves in the open ocean , 1975 .

[86]  G. Taylor Tidal Friction in the Irish Sea , 1919 .