circRNA biogenesis competes with pre-mRNA splicing.

[1]  Petar Glažar,et al.  circBase: a database for circular RNAs , 2014, RNA.

[2]  P. Brown,et al.  Circular RNA Is Expressed across the Eukaryotic Tree of Life , 2014, PloS one.

[3]  D. Bentley Coupling mRNA processing with transcription in time and space , 2014, Nature Reviews Genetics.

[4]  Walter J. Lukiw,et al.  Circular RNA (circRNA) in Alzheimer's disease (AD) , 2013, Front. Genet..

[5]  Julia Salzman,et al.  Cell-Type Specific Features of Circular RNA Expression , 2013, PLoS genetics.

[6]  E. Lander,et al.  The Xist lncRNA Exploits Three-Dimensional Genome Architecture to Spread Across the X Chromosome , 2013, Science.

[7]  R. Sharan,et al.  Alternative splicing regulates biogenesis of miRNAs located across exon-intron junctions. , 2013, Molecular cell.

[8]  M. Alló,et al.  Alternative splicing: a pivotal step between eukaryotic transcription and translation , 2013, Nature Reviews Molecular Cell Biology.

[9]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[10]  J. Kjems,et al.  Natural RNA circles function as efficient microRNA sponges , 2013, Nature.

[11]  Michael K. Slevin,et al.  Circular RNAs are abundant, conserved, and associated with ALU repeats. , 2013, RNA.

[12]  M. Rosbash,et al.  Nascent-Seq analysis of Drosophila cycling gene expression , 2013, Proceedings of the National Academy of Sciences.

[13]  M. Rosbash,et al.  Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse. , 2012, RNA.

[14]  Eric T. Wang,et al.  Transcriptome-wide Regulation of Pre-mRNA Splicing and mRNA Localization by Muscleblind Proteins , 2012, Cell.

[15]  Charles Gawad,et al.  Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types , 2012, PloS one.

[16]  Schraga Schwartz,et al.  Transcriptome-wide discovery of circular RNAs in Archaea , 2011, Nucleic acids research.

[17]  M. Rosbash,et al.  Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. , 2011, Genes & development.

[18]  P. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology : AMB.

[19]  E. Buratti,et al.  TDP‐43: new aspects of autoregulation mechanisms in RNA binding proteins and their connection with human disease , 2011, The FEBS journal.

[20]  Arun K. Ramani,et al.  Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. , 2011, Genome research.

[21]  Larry N. Singh,et al.  U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation , 2010, Nature.

[22]  J. Berglund,et al.  MBNL1 binds GC motifs embedded in pyrimidines to regulate alternative splicing , 2010, Nucleic acids research.

[23]  Sebastian Kadener,et al.  A role for microRNAs in the Drosophila circadian clock. , 2009, Genes & development.

[24]  Mikhail S. Gelfand,et al.  Modulation of alternative splicing by long-range RNA structures in Drosophila , 2009, Nucleic acids research.

[25]  C. Thornton,et al.  RNA-dominant diseases. , 2006, Human molecular genetics.

[26]  J. Houseley,et al.  Noncanonical RNAs from transcripts of the Drosophila muscleblind gene. , 2006, The Journal of heredity.

[27]  A. Kornblihtt,et al.  A slow RNA polymerase II affects alternative splicing in vivo. , 2003, Molecular cell.

[28]  H. Domdey,et al.  Inverse splicing of a discontinuous pre-mRNA intron generates a circular exon in a HeLa cell nuclear extract. , 1996, Nucleic acids research.

[29]  M. Garcia-Blanco,et al.  Exon circularization in mammalian nuclear extracts. , 1996, RNA.

[30]  J. Manley,et al.  Complex alternative RNA processing generates an unexpected diversity of poly(A) polymerase isoforms , 1996, Molecular and cellular biology.

[31]  H. Ostrer,et al.  Inverted repeats are necessary for circularization of the mouse testis Sry transcript. , 1995, Gene.

[32]  Peter Goodfellow,et al.  Circular transcripts of the testis-determining gene Sry in adult mouse testis , 1993, Cell.

[33]  L. Goldstein,et al.  Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. , 1988, Nucleic acids research.

[34]  A. Greenleaf,et al.  A mutation in the largest subunit of RNA polymerase II alters RNA chain elongation in vitro. , 1985, The Journal of biological chemistry.

[35]  H. Zoghbi,et al.  The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. , 2001, Human molecular genetics.