Gene regulatory network inference using fused LASSO on multiple data sets

[1]  Yang Xie,et al.  Ensemble-Based Network Aggregation Improves the Accuracy of Gene Network Reconstruction , 2014, PloS one.

[2]  Junwen Wang,et al.  Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. , 2014, Methods.

[3]  Jimmy Omony,et al.  Biological Network Inference: A Review of Methods and Assessment of Tools and Techniques , 2014 .

[4]  Nathalie Villa-Vialaneix,et al.  Inferring Networks from Multiple Samples with Consensus LASSO , 2014 .

[5]  Ya-Xiang Yuan,et al.  Analysis on a superlinearly convergent augmented Lagrangian method , 2014 .

[6]  Min Chen,et al.  Joint conditional Gaussian graphical models with multiple sources of genomic data , 2013, Front. Genet..

[7]  Nikolay Balov,et al.  A categorical network approach for discovering differentially expressed regulations in cancer , 2013, BMC Medical Genomics.

[8]  Samik Ghosh,et al.  Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks , 2013, PLoS Comput. Biol..

[9]  Yves Van de Peer,et al.  The Mycobacterium tuberculosis regulatory network and hypoxia , 2013, Nature.

[10]  Muriel Médard,et al.  Network deconvolution as a general method to distinguish direct dependencies in networks , 2013, Nature Biotechnology.

[11]  A. Barabasi,et al.  Network link prediction by global silencing of indirect correlations , 2013, Nature Biotechnology.

[12]  Georgios B. Giannakis,et al.  Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations , 2013, PLoS Comput. Biol..

[13]  Qing Zhou,et al.  Learning Sparse Causal Gaussian Networks With Experimental Intervention: Regularization and Coordinate Descent , 2013 .

[14]  C. Mason,et al.  Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data , 2013, Genome Biology.

[15]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[16]  Jean-Philippe Vert,et al.  TIGRESS: Trustful Inference of Gene REgulation using Stability Selection , 2012, BMC Systems Biology.

[17]  D. Husmeier,et al.  Dynamic Bayesian networks in molecular plant science: inferring gene regulatory networks from multiple gene expression time series , 2012, Euphytica.

[18]  Jürgen Kurths,et al.  Unraveling gene regulatory networks from time-resolved gene expression data -- a measures comparison study , 2011, BMC Bioinformatics.

[19]  Chang-Tsun Li,et al.  Directed Partial Correlation: Inferring Large-Scale Gene Regulatory Network through Induced Topology Disruptions , 2011, PloS one.

[20]  Julio Collado-Vides,et al.  RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units) , 2010, Nucleic Acids Res..

[21]  Abhijit Dasgupta,et al.  Brief review of regression‐based and machine learning methods in genetic epidemiology: the Genetic Analysis Workshop 17 experience , 2011, Genetic epidemiology.

[22]  Xavier Robin,et al.  pROC: an open-source package for R and S+ to analyze and compare ROC curves , 2011, BMC Bioinformatics.

[23]  Allen Y. Yang,et al.  Fast ℓ1-minimization algorithms and an application in robust face recognition: A review , 2010, 2010 IEEE International Conference on Image Processing.

[24]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[25]  J. Selbig,et al.  Metabolomic and transcriptomic stress response of Escherichia coli , 2010, Molecular systems biology.

[26]  Constantin F. Aliferis,et al.  Analysis and Computational Dissection of Molecular Signature Multiplicity , 2010, PLoS Comput. Biol..

[27]  Constantin F. Aliferis,et al.  Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation , 2010, J. Mach. Learn. Res..

[28]  Michael P. H. Stumpf,et al.  Simulation-based model selection for dynamical systems in systems and population biology , 2009, Bioinform..

[29]  Michele Ceccarelli,et al.  articleTimeDelay-ARACNE : Reverse engineering of gene networks from time-course data by an information theoretic approach , 2010 .

[30]  Stefan R. Henz,et al.  AGRONOMICS1: A New Resource for Arabidopsis Transcriptome Profiling1[W][OA] , 2009, Plant Physiology.

[31]  Chao Sima,et al.  Inference of Gene Regulatory Networks Using Time-Series Data: A Survey , 2009, Current genomics.

[32]  Leo J. Lee,et al.  Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. , 2009, Genes & development.

[33]  Anne-Laure Boulesteix,et al.  Regularized estimation of large-scale gene association networks using graphical Gaussian models , 2009, BMC Bioinformatics.

[34]  Pei Wang,et al.  Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.

[35]  Gianluca Bontempi,et al.  minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information , 2008, BMC Bioinformatics.

[36]  Guy Karlebach,et al.  Modelling and analysis of gene regulatory networks , 2008, Nature Reviews Molecular Cell Biology.

[37]  Vasyl Pihur,et al.  Reconstruction of genetic association networks from microarray data: a partial least squares approach , 2008, Bioinform..

[38]  T. Hesterberg,et al.  Least angle and ℓ1 penalized regression: A review , 2008, 0802.0964.

[39]  Jun Zhu,et al.  Using matrix of thresholding partial correlation coefficients to infer regulatory network , 2008, Biosyst..

[40]  A. Califano,et al.  Dialogue on Reverse‐Engineering Assessment and Methods , 2007, Annals of the New York Academy of Sciences.

[41]  Kevin Kontos,et al.  Information-Theoretic Inference of Large Transcriptional Regulatory Networks , 2007, EURASIP J. Bioinform. Syst. Biol..

[42]  B. Morgan,et al.  Hydrogen Peroxide Sensing and Signaling , 2022 .

[43]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[44]  Carolina Perez-Iratxeta,et al.  Gene function in early mouse embryonic stem cell differentiation , 2007, BMC Genomics.

[45]  Adam A. Margolin,et al.  Reverse engineering cellular networks , 2006, Nature Protocols.

[46]  U. Alon,et al.  A comprehensive library of fluorescent transcriptional reporters for Escherichia coli , 2006, Nature Methods.

[47]  E. Baena-González,et al.  Sugar sensing and signaling in plants: conserved and novel mechanisms. , 2006, Annual review of plant biology.

[48]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[49]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[50]  Richard Bonneau,et al.  The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo , 2006, Genome Biology.

[51]  Rafael A. Irizarry,et al.  Bioinformatics and Computational Biology Solutions using R and Bioconductor , 2005 .

[52]  Korbinian Strimmer,et al.  An empirical Bayes approach to inferring large-scale gene association networks , 2005, Bioinform..

[53]  Víctor de Lorenzo,et al.  Promoters in the environment: transcriptional regulation in its natural context , 2005, Nature Reviews Microbiology.

[54]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[55]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[56]  C. Gross,et al.  Multiple sigma subunits and the partitioning of bacterial transcription space. , 2003, Annual review of microbiology.

[57]  A. Schulze,et al.  Navigating gene expression using microarrays — a technology review , 2001, Nature Cell Biology.

[58]  J. López-Barneo,et al.  Cellular mechanism of oxygen sensing. , 2001, Annual review of physiology.

[59]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[60]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[62]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.