A Two-Level Schwarz Preconditioner for Heterogeneous Problems

Coarse space correction is essential to achieve algorithmic scalability in domain decomposition methods. Our goal here is to build a robust coarse space for Schwarz– type preconditioners for elliptic problems with highly heterogeneous coefficients when the discontinuities are not just across but also along subdomain interfaces, where classical results break down [3, 6, 9, 15].

[1]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[2]  Frédéric Nataf,et al.  Analysis of a Two-level Schwarz Method with Coarse Spaces Based on Local Dirichlet-to-Neumann Maps , 2012, Comput. Methods Appl. Math..

[3]  Robert Scheichl,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Weighted Poincaré Inequalities and Applications in Domain Decomposition , 2009 .

[4]  Robert Scheichl,et al.  Scaling up through domain decomposition , 2009 .

[5]  Panayot S. Vassilevski,et al.  Spectral AMGe (ρAMGe) , 2003, SIAM J. Sci. Comput..

[6]  Robert Scheichl,et al.  Analysis of FETI methods for multiscale PDEs. Part II: interface variation , 2011, Numerische Mathematik.

[7]  O. Widlund,et al.  Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions , 1994 .

[8]  Hua Xiang,et al.  A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps , 2010 .

[9]  Ludmil T. Zikatanov,et al.  Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids , 2012, SIAM J. Numer. Anal..

[10]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[11]  Marian Brezina,et al.  Balancing domain decomposition for problems with large jumps in coefficients , 1996, Math. Comput..

[12]  R. Nicolaides Deflation of conjugate gradients with applications to boundary value problems , 1987 .

[13]  Robert Scheichl,et al.  Weighted Poincaré inequalities , 2013 .

[14]  Ludmil T. Zikatanov,et al.  Weak Approximation Properties of Elliptic Projections with Functional Constraints , 2011, Multiscale Model. Simul..