A simple algorithm for stable order reduction of z-domain Laguerre models

Discrete-time Laguerre series are a well known and efficient tool in system identification and modeling. This paper presents a simple solution for stable and accurate order reduction of systems described by a Laguerre model.

[1]  Noël Tanguy,et al.  Laguerre-Gram reduced-order modeling , 2005, IEEE Transactions on Automatic Control.

[2]  L. Silverman,et al.  Model reduction via balanced state space representations , 1982 .

[3]  Saman S. Abeysekera,et al.  Optimal Laguerre filters for sigma-delta demodulator circuits , 2000, Signal Process..

[4]  P. N. Paraskevopoulos,et al.  Digital laguerre filters , 1977 .

[5]  Amin Zollanvari,et al.  Complex digital Laguerre filter design with weighted least square error subject to magnitude and phase constraints , 2008, Signal Process..

[6]  D. Hou,et al.  Linear approximation of fractional transfer functions of distributed parameter systems , 1990 .

[7]  Hanoch Lev-Ari,et al.  Adaptive Laguerre-lattice filters , 1997, IEEE Trans. Signal Process..

[8]  N. Tanguy,et al.  Optimum choice of free parameter in orthonormal approximations , 1995, IEEE Trans. Autom. Control..

[9]  Tomás Oliveira e Silva,et al.  Optimality conditions for truncated Laguerre networks , 1994, IEEE Trans. Signal Process..

[10]  V. Sreeram On the generalized q-Markov cover models for discrete-time systems , 1994, IEEE Trans. Autom. Control..

[11]  Mohammad Ali Masnadi-Shirazi,et al.  Laguerre discrete-time filter design , 2003, Comput. Electr. Eng..

[12]  Noël Tanguy,et al.  Gram matrix of a Laguerre model: application to model reduction of irrational transfer function , 2005, Signal Process..

[13]  D. D. Falconer,et al.  Reduced complexity echo cancellation using orthonormal functions , 1991 .

[14]  Mohammad Ali Masnadi-Shirazi,et al.  Adaptive Laguerre network realization , 2000, Signal Process..

[15]  Noël Tanguy,et al.  Online optimization of the time scale in adaptive Laguerre-based filters , 2000, IEEE Trans. Signal Process..

[16]  P. Brehonnet,et al.  A new discrete impulse response Gramian and its application to model reduction , 2000, IEEE Trans. Autom. Control..

[17]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[18]  J. Amorocho,et al.  Determination of Nonlinear Functional Response Functions in Rainfall-Runoff Processes , 1971 .

[19]  P. Agathoklis,et al.  The discrete-time q-Markov cover models with improved low-frequency approximation , 1994, IEEE Trans. Autom. Control..

[20]  Lawrence Stark,et al.  Kernel method for nonlinear analysis: identification of a biological control system , 1975 .

[21]  Yun Ye,et al.  Zero-based equalizers for single-input single-output and single-input multiple-output channels , 2008, Signal Process..

[22]  Albertus C. den Brinker Laguerre-domain adaptive filters , 1994, IEEE Trans. Signal Process..

[23]  I. S. Stievano,et al.  An application of Volterra series to IC buffer models , 2010, 2010 IEEE 14th Workshop on Signal Propagation on Interconnects.

[24]  Amin Zollanvari,et al.  A class of comprehensive constraints for design of PCWLSE Laguerre and FIR filters: A boost in performance , 2010, Signal Process..

[25]  Nasir Ahmed,et al.  Optimum Laguerre networks for a class of discrete-time systems , 1991, IEEE Trans. Signal Process..

[26]  Ricardo J. G. B. Campello,et al.  Optimal expansions of discrete-time Volterra models using Laguerre functions , 2003, Autom..

[27]  T. Oliveira e Silva,et al.  On the determination of the optimal pole position of Laguerre filters , 1995, IEEE Trans. Signal Process..

[28]  Albertus C. den Brinker,et al.  Pole optimisation in adaptive Laguerre filtering , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[29]  Jozsef Bokor,et al.  Approximate Identification in Laguerre and Kautz Bases , 1998, Autom..

[30]  Victor Sreeram,et al.  Model reduction of linear discrete systems via weighted impulse response gramians , 1991 .

[31]  Guy A. Dumont,et al.  Non-linear adaptive control via Laguerre expansion of Volterra kernels , 1993 .

[32]  Daniël De Zutter,et al.  Stable Laguerre-SVD reduced-order modeling , 2003 .

[33]  Reza Ebrahimi,et al.  Broadband beamforming using Laguerre filters , 2012, Signal Process..

[34]  J. Alexis De Abreu Garcia,et al.  Least-squares model order reduction enhancements , 1993, IEEE Trans. Ind. Electron..

[35]  Saman S. Abeysekera Recursive Laguerre and Kalman filters as efficient full-rate sigma-delta (Sigma-Delta) demodulators , 2007, Signal Process..

[36]  Albertus C. den Brinker Adaptive modified Laguerre filters , 1993, Signal Process..

[37]  van den Pmj Paul Hof,et al.  Identification of LPV systems using orthonormal basis functions , 2005 .

[38]  Kok Lay Teo,et al.  Digital Laguerre filter design with maximum passband-to-stopband energy ratio subject to peak and Group delay constraints , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[39]  V. Marmarelis Identification of nonlinear biological systems using laguerre expansions of kernels , 1993, Annals of Biomedical Engineering.

[40]  G. Dumont,et al.  An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..