Incremental variational principles and finite element models for nonlinear problems
暂无分享,去创建一个
[1] Theodore H. H. Pian,et al. Finite Element Methods in Continuum Mechanics , 1972 .
[2] Rodney Hill,et al. Elastic potentials and the structure of inelastic constitutive laws , 1973 .
[3] Theodore H. H. Pian,et al. Basis of finite element methods for solid continua , 1969 .
[4] Y. Fung. Foundations of solid mechanics , 1965 .
[5] S. T. Mau,et al. Derivation of geometric stiffness and mass matrices for finite element hybrid models , 1974 .
[6] Thh Pian. VARIATIONAL FORMULATIONS OF NUMERICAL METHODS IN SOLID CONTINUA , 1971 .
[7] B. D. Veubeke,et al. A new variational principle for finite elastic displacements , 1972 .
[8] W. T. Koiter. On the Principle of Stationary Complementary Energy in the Nonlinear Theory of Elasticity , 1973 .
[9] R. H. Mallett,et al. Finite Element Analysis of Nonlinear Structures , 1968 .
[10] Theodore H. H. Pian,et al. Theoretical Formulation of Finite-Element Methods in Linear-Elastic Analysis of General Shells∗ , 1972 .
[11] Theodore H. H. Pian,et al. Variational Formulation of Finite-Displacement Analysis, , 1971 .
[12] J. Oden. Finite Elements of Nonlinear Continua , 1971 .
[13] B. D. Veubeke. Displacement and equilibrium models in the finite element method , 1965 .
[14] John Argyris,et al. Large natural strains and some special difficulties due to non-linearity and incompressibility in finite elements , 1974 .
[15] Simplified Hybrid Displacement Method Applied to Plate Buckling Problems , 1972 .
[16] John Patrick Wolf,et al. Generalized stress models for finite element analysis , 1974 .
[17] M. Link. Zur Berechnung von Platten nach der Theorie II. Ordnung mit Hilfe eines hybriden Deformationsmodells , 1973 .
[18] J. H. Argyris,et al. Energy theorems and structural analysis , 1960 .
[19] Satyanadham Atluri,et al. On the hybrid stress finite element model for incremental analysis of large deflection problems , 1973 .