Incremental variational principles and finite element models for nonlinear problems

Abstract The classical variational principles are formulated for nonlinear problems by considering incremental deformations of a continuum. Associated finite element models are derived, adopting the terminology introduced by Pian for classification of linear finite element models. It is demonstrated how the classical incremental variational principles can be modified by relaxing the continuity requirements between adjoining elements. Nonlinear hybrid finite element models arising from such modifications are discussed.

[1]  Theodore H. H. Pian,et al.  Finite Element Methods in Continuum Mechanics , 1972 .

[2]  Rodney Hill,et al.  Elastic potentials and the structure of inelastic constitutive laws , 1973 .

[3]  Theodore H. H. Pian,et al.  Basis of finite element methods for solid continua , 1969 .

[4]  Y. Fung Foundations of solid mechanics , 1965 .

[5]  S. T. Mau,et al.  Derivation of geometric stiffness and mass matrices for finite element hybrid models , 1974 .

[6]  Thh Pian VARIATIONAL FORMULATIONS OF NUMERICAL METHODS IN SOLID CONTINUA , 1971 .

[7]  B. D. Veubeke,et al.  A new variational principle for finite elastic displacements , 1972 .

[8]  W. T. Koiter On the Principle of Stationary Complementary Energy in the Nonlinear Theory of Elasticity , 1973 .

[9]  R. H. Mallett,et al.  Finite Element Analysis of Nonlinear Structures , 1968 .

[10]  Theodore H. H. Pian,et al.  Theoretical Formulation of Finite-Element Methods in Linear-Elastic Analysis of General Shells∗ , 1972 .

[11]  Theodore H. H. Pian,et al.  Variational Formulation of Finite-Displacement Analysis, , 1971 .

[12]  J. Oden Finite Elements of Nonlinear Continua , 1971 .

[13]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[14]  John Argyris,et al.  Large natural strains and some special difficulties due to non-linearity and incompressibility in finite elements , 1974 .

[15]  Simplified Hybrid Displacement Method Applied to Plate Buckling Problems , 1972 .

[16]  John Patrick Wolf,et al.  Generalized stress models for finite element analysis , 1974 .

[17]  M. Link Zur Berechnung von Platten nach der Theorie II. Ordnung mit Hilfe eines hybriden Deformationsmodells , 1973 .

[18]  J. H. Argyris,et al.  Energy theorems and structural analysis , 1960 .

[19]  Satyanadham Atluri,et al.  On the hybrid stress finite element model for incremental analysis of large deflection problems , 1973 .