Thirty years of G-stability
暂无分享,去创建一个
[1] C F Curtiss,et al. Integration of Stiff Equations. , 1952, Proceedings of the National Academy of Sciences of the United States of America.
[2] G. Dahlquist. Convergence and stability in the numerical integration of ordinary differential equations , 1956 .
[3] G. Dahlquist. A special stability problem for linear multistep methods , 1963 .
[4] John C. Butcher,et al. On the Convergence of Numerical Solutions to Ordinary Differential Equations , 1966 .
[5] John C. Butcher,et al. A stability property of implicit Runge-Kutta methods , 1975 .
[6] G. Dahlquist. Error analysis for a class of methods for stiff non-linear initial value problems , 1976 .
[7] Germund Dahlquist,et al. G-stability is equivalent toA-stability , 1978 .
[8] K. Burrage,et al. Stability Criteria for Implicit Runge–Kutta Methods , 1979 .
[9] M. Crouzeix. Sur laB-stabilité des méthodes de Runge-Kutta , 1979 .
[10] K. Burrage,et al. Non-linear stability of a general class of differential equation methods , 1980 .
[11] Olavi Nevanlinna,et al. Multiplier techniques for linear multistep methods , 1981 .
[12] Christoph W. Ueberhuber,et al. The Concept of B-Convergence , 1981 .
[13] Werner Liniger,et al. Stability of Two-Step Methods for Variable Integration Steps , 1983 .
[14] John C. Butcher,et al. The equivalence of algebraic stability andAN-stability , 1987 .
[15] John C. Butcher. Linear and non-linear stability for general linear methods , 1987 .
[16] J. M. Sanz-Serna,et al. Runge-kutta schemes for Hamiltonian systems , 1988 .
[17] F. Lasagni. Canonical Runge-Kutta methods , 1988 .
[18] Y. Suris,et al. The canonicity of mappings generated by Runge-Kutta type methods when integrating the systems x¨ = - 6 U/ 6 x , 1989 .
[19] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[20] J. Butcher,et al. Linear Multistep Methods as Irreducible General Linear Methods , 2006 .