Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter

The ratio of carbon to phosphorus in marine phytoplankton biomass varies by ecosystem. Biogeochemical modelling suggests that organic carbon exported to depth shows similar variations in stoichiometry.

[1]  S. Levitus,et al.  World ocean atlas 2009 , 2010 .

[2]  François Primeau,et al.  Optimization and sensitivity of a global biogeochemistry ocean model using combined in situ DIC, alkalinity, and phosphate data , 2008 .

[3]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[4]  Jorge L. Sarmiento,et al.  Ocean Biogeochemical Dynamics , 2006 .

[5]  Michael W. Lomas,et al.  Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP) , 2009 .

[6]  Michael J. Follows,et al.  Preformed phosphate, soft tissue pump and atmospheric CO 2 , 2005 .

[7]  P. Huybers,et al.  How is the ocean filled? , 2011 .

[8]  Jasper A. Vrugt,et al.  Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter , 2013 .

[9]  Scott C. Doney,et al.  Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation , 2007 .

[10]  T. Peng,et al.  Latitudinal change of remineralization ratios in the oceans and its implication for nutrient cycles , 2002 .

[11]  M. Behrenfeld,et al.  Global net community production and the putative net heterotrophy of the oligotrophic oceans , 2012 .

[12]  Taro Takahashi,et al.  Redfield ratio based on chemical data from isopycnal surfaces , 1985 .

[13]  E. Boyle,et al.  Phosphate depletion in the western North Atlantic Ocean. , 2000, Science.

[14]  M. Holzer,et al.  Southern Ocean nutrient trapping and the efficiency of the biological pump , 2013 .

[15]  David A. Siegel,et al.  Carbon‐based primary productivity modeling with vertically resolved photoacclimation , 2008 .

[16]  D. Capone,et al.  Emerging patterns of marine nitrogen fixation , 2011, Nature Reviews Microbiology.

[17]  A. Englebrecht,et al.  Late Holocene variations in Pacific surface circulation and biogeochemistry inferred from proteinaceous deep-sea corals , 2013 .

[18]  Jorge L. Sarmiento,et al.  Redfield ratios of remineralization determined by nutrient data analysis , 1994 .

[19]  C. Deutsch,et al.  Nutrient ratios as a tracer and driver of ocean biogeochemistry. , 2012, Annual review of marine science.

[20]  L. A. Anderson,et al.  Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates , 2012 .

[21]  François Primeau,et al.  Dynamically and Observationally Constrained Estimates of Water-Mass Distributions and Ages in the Global Ocean , 2011 .

[22]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[23]  C. Deutsch,et al.  The sequestration efficiency of the biological pump , 2012 .

[24]  P. Naik,et al.  Simple equations to estimate ratios of new or export production to total production from satellite‐derived estimates of sea surface temperature and primary production , 2011 .

[25]  Scott C. Doney,et al.  Projected 21st century decrease in marine productivity: a multi-model analysis , 2009 .

[26]  M. Lomas,et al.  Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean , 2013 .

[27]  Scott C. Doney,et al.  Marine Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios , 2013 .

[28]  Steven Emerson,et al.  Annual net community production and the biological carbon flux in the ocean , 2014 .

[29]  A. Oschlies,et al.  Model‐based evaluation of methods to determine C:N and N:P regeneration ratios from dissolved nutrients , 2005 .