Mixed perfectly-matched-layers for direct transient analysis in 2D elastic heterogeneous media

Abstract We are concerned with elastic waves arising in plane-strain problems in an elastic semi-infinite arbitrarily heterogeneous medium. Specifically, we discuss the development of a new mixed displacement–stress formulation for forward elastic wave simulations in perfectly-matched-layer (PML)-truncated heterogeneous media. To date, most PML formulations split the displacement and stress fields, resulting in non-physical components for each field. In this work, we favor unsplit schemes, primarily for the relative ease by which the resulting forms can be incorporated into existing codes, the ease by which the resulting semi-discrete forms can be integrated in time, and the ease by which they can be used in adjoint formulations arising in inverse problems, contrary to most past and current developments. We start by following classical lines, and apply complex-coordinate-stretching to the governing equations in the frequency domain, while retaining both displacements and stress quantities as unknowns. With the aid of auxiliary variables the resulting mixed form is rendered second-order in time, thereby allowing the use of standard time integration schemes. We report on numerical simulations demonstrating the stability and efficacy of the approach.

[1]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[2]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..

[3]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[4]  D. Arnold,et al.  Mixed Finite Elements for Elasticity in the Stress-Displacement Formulation , 2002 .

[5]  Qing Huo Liu,et al.  Perfectly matched layers for elastic waves in cylindrical and spherical coordinates , 1999 .

[6]  Jean-Pierre Berenger,et al.  Evanescent waves in PML's: origin of the numerical reflection in wave-structure interaction problems , 1999 .

[7]  E. Michielssen,et al.  Complex coordinate system as a generalized absorbing boundary condition , 1997, IEEE Antennas and Propagation Society International Symposium 1997. Digest.

[8]  F. Teixeira,et al.  Mixed Finite-Element Time-Domain Method for Transient Maxwell Equations in Doubly Dispersive Media , 2008, IEEE Transactions on Microwave Theory and Techniques.

[9]  Raj Mittra,et al.  Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .

[10]  Claes Johnson,et al.  Some equilibrium finite element methods for two-dimensional elasticity problems , 1978 .

[11]  M. E. Morley A family of mixed finite elements for linear elasticity , 1989 .

[12]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[13]  Patrick Joly,et al.  FICTITIOUS DOMAINS, MIXED FINITE ELEMENTS AND PERFECTLY MATCHED LAYERS FOR 2-D ELASTIC WAVE PROPAGATION , 2001 .

[14]  Daniël De Zutter,et al.  On the stretching of Maxwell's equations in general orthogonal coordinate systems and the perfectly matched layer , 2000 .

[15]  F. Brezzi A Survey of Mixed Finite Element Methods , 1988 .

[16]  R. G. Voigt,et al.  Finite elements: Theory and application , 1988 .

[17]  F. Teixeira,et al.  Conformal Perfectly Matched Layer for the Mixed Finite Element Time-Domain Method , 2008, IEEE Transactions on Antennas and Propagation.

[18]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[19]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[20]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[21]  Patrick Joly,et al.  A New Family of Mixed Finite Elements for the Linear Elastodynamic Problem , 2001, SIAM J. Numer. Anal..

[22]  W. Chew,et al.  Perfectly matched layer in cylindrical coordinates , 1997, IEEE Antennas and Propagation Society International Symposium 1997. Digest.

[23]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[24]  A. Chopra,et al.  Perfectly matched layers for transient elastodynamics of unbounded domains , 2004 .

[25]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[26]  Davi Correia,et al.  Performance of regular PML, CFS‐PML, and second‐order PML for waveguide problems , 2006 .

[27]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[28]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[29]  L. Kallivokas,et al.  Local absorbing boundaries of elliptical shape for scalar waves , 2004 .

[30]  A. Giannopoulos,et al.  A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves , 2007 .

[31]  Roland Martin,et al.  A Variational Formulation of a Stabilized Unsplit Convolutional Perfectly Matched Layer for The Isotropic or Anisotropic Seismic Wave Equation , 2008 .

[32]  Isaac Harari,et al.  Studies of FE/PML for exterior problems of time-harmonic elastic waves , 2004 .

[33]  D. Arnold Mixed finite element methods for elliptic problems , 1990 .

[34]  Zhangxin Chen Finite Element Methods And Their Applications , 2005 .

[35]  J. Oden,et al.  On Mixed Finite Element Approximations , 1976 .

[36]  J. Bérenger,et al.  Application of the CFS PML to the absorption of evanescent waves in waveguides , 2002, IEEE Microwave and Wireless Components Letters.

[37]  S. Gedney,et al.  On the long-time behavior of unsplit perfectly matched layers , 2004, IEEE Transactions on Antennas and Propagation.

[38]  Weng Cho Chew,et al.  PML-FDTD in cylindrical and spherical grids , 1997 .

[39]  Ushnish Basu,et al.  Explicit finite element perfectly matched layer for transient three‐dimensional elastic waves , 2009 .

[40]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[41]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[42]  J. Vilotte,et al.  The Newmark scheme as velocity–stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics , 2005 .

[43]  Patrick Joly,et al.  An Analysis of New Mixed Finite Elements for the Approximation of Wave Propagation Problems , 2000, SIAM J. Numer. Anal..

[44]  R. Higdon Absorbing boundary conditions for elastic waves , 1991 .

[45]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[46]  Franco Brezzi,et al.  A survey on mixed finite element approximations , 1994 .

[47]  Jacobo Bielak,et al.  A simple impedance-infinite element for the finite element solution of the three-dimensional wave equation in unbounded domains , 1997 .

[48]  D. Givoli,et al.  High-order non-reflecting boundary scheme for time-dependent waves , 2003 .

[49]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[50]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[51]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[52]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[53]  Dan Givoli,et al.  A finite element method for large domains , 1989 .

[54]  S. Gedney An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices , 1996 .

[55]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[56]  L. D. Marini An Inexpensive Method for the Evaluation of the Solution of the Lowest Order Raviart–Thomas Mixed Method , 1985 .

[57]  Kristel C. Meza-Fajardo,et al.  A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis , 2008 .

[58]  A. Chopra,et al.  Perfectly matched layers for time-harmonic elastodynamics of unbounded domains : Theory and finite-element implementation , 2003 .

[59]  S. Gedney,et al.  An efficient FDTD implementation of the PML with CFS in general media , 2000, IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C.

[60]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[61]  Q. Liu,et al.  Quasi‐PML for waves in cylindrical coordinates , 1998 .

[62]  Gary Cohen,et al.  Mixed Spectral Finite Elements for the Linear Elasticity System in Unbounded Domains , 2005, SIAM J. Sci. Comput..

[63]  Tsili Wang,et al.  Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach , 2003 .

[64]  D. Arnold,et al.  RECTANGULAR MIXED FINITE ELEMENTS FOR ELASTICITY , 2005 .

[65]  J.-P. Wrenger,et al.  Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs , 2002 .

[66]  Thomas J. R. Hughes,et al.  A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation , 1988 .

[67]  Li Zhao The generalized theory of perfectly matched layers (GT‐PML) in curvilinear co‐ordinates , 2000 .

[68]  Jeroen Tromp,et al.  A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .

[69]  W. Chew,et al.  Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates , 1997 .

[70]  Jianming Jin,et al.  Second-Order Perfectly Matched Layers for the Time-Domain Finite-Element Method , 2007, IEEE Transactions on Antennas and Propagation.

[71]  Jian-Ming Jin,et al.  On the development of a higher-order PML , 2005, IEEE Transactions on Antennas and Propagation.

[72]  Gaetano Festa,et al.  PML Absorbing Boundaries , 2003 .

[73]  Fernando L. Teixeira,et al.  On causality and dynamic stability of perfectly matched layers for FDTD simulations , 1999 .

[74]  John B. Schneider,et al.  Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation , 1996 .

[75]  C. P. Gupta,et al.  A family of higher order mixed finite element methods for plane elasticity , 1984 .

[76]  Qing Huo Liu,et al.  PERFECTLY MATCHED LAYERS FOR ELASTODYNAMICS: A NEW ABSORBING BOUNDARY CONDITION , 1996 .

[77]  S. Vigdergauz,et al.  Artificial boundary conditions for 2D problems in geophysics , 1993 .

[78]  Leszek Demkowicz,et al.  Improving the performance of perfectly matched layers by means of hp‐adaptivity , 2007, Numerical Methods for Partial Differential Equations.

[79]  W. Chew,et al.  Complex space approach to perfectly matched layers: a review and some new developments , 2000 .

[80]  Antonios Giannopoulos,et al.  Complex frequency shifted convolution PML for FDTD modelling of elastic waves , 2007 .

[81]  D. Arnold,et al.  A new mixed formulation for elasticity , 1988 .

[82]  Qing Huo Liu,et al.  A nonuniform cylindrical FDTD algorithm with improved PML and quasi-PML absorbing boundary conditions , 1999, IEEE Trans. Geosci. Remote. Sens..