Aerogels from metal chalcogenides and their emerging unique properties

Metal-oxide and carbon gels and aerogels have been known for a long time. These aerogels have always been of strong interest because of their intriguing properties and potential diverse technological impact. Thanks to new sol–gel chemistry, chalcogenide nanoparticle and cluster-based aerogels (chalcogels) are the latest aerogels to come to the field and are now gaining notoriety because of properties not available in conventional aerogels. In this article, we highlight the recent synthetic advances in chalcogenide aerogels and their emerging unique properties and discuss some potential applications.

[1]  A. Pierre,et al.  Preparation and characterization of GeS_2 , 1996 .

[2]  A. Pierre,et al.  Preparation of tungsten sulfides by sol—gel processing , 1997 .

[3]  A. Pierre,et al.  Influence of Reaction Parameters on the Microstructure of the Germanium Disulfide Gel , 2004 .

[4]  Schoeller Leitfaden der theoretischen Chemie. Von Prof. W. Herz. Verlag von Ferdinand Enke, Stuttgart. Dritte Auflage , 1924 .

[5]  T. Pinnavaia,et al.  Access in mesoporous materials: Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation , 1997 .

[6]  S. Brock,et al.  Sol-Gel assembly of CdSe nanoparticles to form porous aerogel networks. , 2006, Journal of the American Chemical Society.

[7]  M. Kanatzidis,et al.  Hexagonal Pore Organization in Mesostructured Metal Tin Sulfides Built with [Sn2S6]4-Cluster , 2002 .

[8]  Stephanie L. Brock,et al.  A new addition to the aerogel community: unsupported CdS aerogels with tunable optical properties , 2004 .

[9]  A. Pierre,et al.  Metal sulfide preparation from a sol–gel product and sulfur , 1997 .

[10]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[11]  J. Yun,et al.  Inside Cover: Catalytic Asymmetric Boration of Acyclic α,β‐Unsaturated Esters and Nitriles (Angew. Chem. Int. Ed. 1/2008) , 2008 .

[12]  R. Prud’homme,et al.  Synthesis of a novel hydrogel based on a coordinate covalent polymer network , 1993 .

[13]  S. Kistler,et al.  Coherent Expanded Aerogels and Jellies. , 1931, Nature.

[14]  J. Boilot,et al.  New transparent chalcogenide materials using a sol-gel process , 1997 .

[15]  G. Armatas,et al.  Porous Semiconducting Gels and Aerogels from Chalcogenide Clusters , 2007, Science.

[16]  V. Stanic,et al.  Chemical Kinetics Study of the Sol−Gel Processing of GeS2 , 2001 .

[17]  J. Boilot,et al.  Sulfide Gels and Films: Products of Non-Oxide Gelation , 1998 .

[18]  S. Turrell,et al.  Spectroscopic investigations of CdS nanoparticles in sol-gel derived polymeric thin films and bulk silica matrices , 2001 .

[19]  S. Brock,et al.  Sol-gel methods for the assembly of metal chalcogenide quantum dots. , 2007, Accounts of chemical research.

[20]  Porous Semiconductor Chalcogenide Aerogels , 2005 .

[21]  M. Kanatzidis,et al.  Periodic hexagonal mesostructured chalcogenides based on platinum and [SnSe4]4- and [SnTe4]4- precursors. Solvent dependence of nanopore and wall organization. , 2005, Journal of the American Chemical Society.

[22]  D. Georgiev,et al.  Synthesis and characterization of germanium sulfide aerogels , 2006 .

[23]  A. Pierre,et al.  Sol-gel processing of ZnS , 1997 .

[24]  S. Brock,et al.  METAL CHALCOGENIDE GELS, XEROGELS AND AEROGELS , 2006 .

[25]  Kenneth M. Kemner,et al.  Functionalized Monolayers on Ordered Mesoporous Supports , 1997 .

[26]  G. C. Allen,et al.  Characterization of lanthanum sulphides , 1992 .

[27]  R. Pekala,et al.  Organic aerogels from the polycondensation of resorcinol with formaldehyde , 1989 .

[28]  Rimple B. Bhatia,et al.  Aqueous Sol−Gel Process for Protein Encapsulation , 2000 .

[29]  N. Hüsing Cluster-based holey semiconductors. , 2008, Angewandte Chemie.

[30]  J. Boilot,et al.  Transformation of CdS Colloids: Sols, Gels, and Precipitates , 2001 .

[31]  S. Brock,et al.  Sol−Gel Processing of Semiconducting Metal Chalcogenide Xerogels: Influence of Dimensionality on Quantum Confinement Effects in a Nanoparticle Network , 2005 .

[32]  P. Kumta,et al.  Thio sol-gel process for the synthesis of titanium disulfide , 1994 .

[33]  S. Brock,et al.  Highly luminescent quantum-dot monoliths. , 2007, Journal of the American Chemical Society.

[34]  J. Boilot,et al.  Sol–gel transition in CdS colloids , 1997 .