Overview of Spirit Microscopic Imager Results
暂无分享,去创建一个
Jeffrey R. Johnson | K. Herkenhoff | R. Kirk | S. Squyres | L. Soderblom | J. Bell | J. Maki | R. Arvidson | N. Cabrol | M. Sims | P. Geissler | F. Calef | Ella Lee | J. Richie | M. Rice | B. Franklin | N. Spanovich | J. Hurowitz | B. Redding | M. Chapman | K. Mullins | E. Jensen | P. Lanagan | L. Edgar | A. Yingst | C. Leff | S. Cole | R. Sullivan | B. Sucharski | R. Springer | A. Sunda | A. Vaughan
[1] V. Hamilton,et al. Wishstone to Watchtower: Amorphous alteration of plagioclase-rich rocks in Gusev crater, Mars , 2017 .
[2] S. Ruff,et al. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile , 2016, Nature Communications.
[3] S. Cole. Petrology, Stratigraphy, And Geologic History Of Husband Hill, Gusev Crater, Mars , 2015 .
[4] A. Knoll,et al. Sands at Gusev Crater, Mars , 2014 .
[5] K. Herkenhoff,et al. Similar Microtextures in Watchtower and Comanche Class Rocks at Gusev Crater , 2014 .
[6] S. Ruff,et al. Evidence for a Noachian-Aged Ephemeral Lake in Gusev Crater, Mars , 2014 .
[7] Suniti Karunatillake,et al. A martian case study of segmenting images automatically for granulometry and sedimentology, Part 1: Algorithm , 2014 .
[8] Jonathan M. Husch,et al. Segmenting images automatically for granulometry and sedimentology: a martian case study , 2013 .
[9] V. Hamilton,et al. Distribution and characteristics of Adirondack-class basalt as observed by Mini-TES in Gusev crater, Mars and its possible volcanic source , 2012 .
[10] K. Herkenhoff,et al. Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rov , 2011 .
[11] Jeffrey R. Johnson,et al. Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations , 2011 .
[12] H. McSween,et al. Origin of basaltic soils at Gusev crater, Mars, by aeolian modification of impact-generated sediment , 2011 .
[13] Jeffrey R. Johnson,et al. Temporal observations of bright soil exposures at Gusev crater, Mars , 2011 .
[14] Geoffrey A. Landis,et al. Pancam and Microscopic Imager observations of dust on the Spirit Rover: Cleaning events, spectral properties, and aggregates , 2010 .
[15] Raymond E. Arvidson,et al. Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover , 2010, Science.
[16] Jeffrey R. Johnson,et al. Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater , 2010 .
[17] L. Crumpler,et al. Constraints on the geologic history of “Home Plate” materials provided by clast morphology and texture , 2010 .
[18] G. Landis,et al. Gusev Crater, Mars: Observations of three dust devil seasons , 2010 .
[19] K. Herkenhoff,et al. Regional and grain size influences on the geochemistry of soil at Gusev crater, Mars , 2010 .
[20] Recent Spirit Results: Microscopic Imager Analysis of Particle Properties in Scamander Crater, West of Home Plate , 2010 .
[21] Jeffrey R. Johnson,et al. Overview of the magnetic properties experiments on the Mars Exploration Rovers , 2009 .
[22] D. Ming,et al. Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate , 2008 .
[23] D. Ming,et al. Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover , 2008 .
[24] William H. Farrand,et al. Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate , 2008 .
[25] N. Cabrol,et al. Morphology and texture of particles along the Spirit rover traverse from sol 450 to sol 745 , 2008 .
[26] William H. Farrand,et al. Light-toned salty soils and coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills , 2008 .
[27] William H. Farrand,et al. Rock spectral classes observed by the Spirit Rover's Pancam on the Gusev Crater Plains and in the Columbia Hills , 2008 .
[28] Trent M. Hare,et al. Surface processes recorded by rocks and soils on Meridiani Planum, Mars: Microscopic Imager observations during Opportunity's first three extended missions , 2008 .
[29] Jeffrey R. Johnson,et al. Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater , 2008 .
[30] J. Grant,et al. Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars , 2008 .
[31] E. A. Guinness,et al. In-situ observations of the physical properties of the Martian surface , 2008 .
[32] James F. Bell,et al. Mars Exploration Rover Navigation Camera in‐flight calibration , 2008 .
[33] Jeffrey R. Johnson,et al. Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles class soils , 2008 .
[34] Rongxing Li,et al. Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven , 2008 .
[35] William H. Farrand,et al. Hydrothermal origin of halogens at Home Plate, Gusev Crater , 2008 .
[36] S. Squyres,et al. Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle X‐Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra , 2008 .
[37] K. Di,et al. Columbia Hills, Mars: Aeolian features seen from the ground and orbit , 2008 .
[38] D. Ming,et al. Detection of Silica-Rich Deposits on Mars , 2008, Science.
[39] K. Herkenhoff,et al. Wind-driven Particle Mobility on Mars: Insights from MER Observations at , 2007 .
[40] Jeffrey R. Johnson,et al. Mineralogic constraints on sulfur‐rich soils from Pancam spectra at Gusev crater, Mars , 2007 .
[41] K. Herkenhoff,et al. Linking Home Plate and Algonquin Class Rocks through Microtextural Analysis: Evidence for Hydrovolcanism in the Inner Basin of Columbia Hills, Gusev Crater , 2007 .
[42] D. Ming,et al. Evidence for Montmorillonite or its Compositional Equivalent in Columbia Hills, Mars , 2007 .
[43] A. F. C. Haldemann,et al. Pyroclastic Activity at Home Plate in Gusev Crater, Mars , 2007, Science.
[44] Jeffrey R. Johnson,et al. The rocks of Gusev Crater as viewed by the Mini‐TES instrument , 2006 .
[45] S. Squyres,et al. Structure and stratigraphy of Home Plate from the Spirit Mars Exploration Rover , 2006 .
[46] Richard V. Morris,et al. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars , 2006 .
[47] Nathalie A. Cabrol,et al. Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater , 2006 .
[48] D. Ming,et al. Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .
[49] William H. Farrand,et al. Rocks of the Columbia Hills , 2006 .
[50] Nathalie A. Cabrol,et al. Gusev crater: Wind‐related features and processes observed by the Mars Exploration Rover Spirit , 2006 .
[51] Steven W. Squyres,et al. Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .
[52] Raymond E. Arvidson,et al. In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars , 2006 .
[53] William H. Farrand,et al. Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .
[54] Jeffrey R. Johnson,et al. Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars , 2006 .
[55] Charles K. Thompson,et al. Processing of Mars Exploration Rover Imagery for Science and Operations Planning , 2006 .
[56] Miles J. Johnson,et al. In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .
[57] R Sullivan,et al. The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.
[58] P H Smith,et al. Textures of the soils and rocks at Gusev Crater from Spirit's Microscopic Imager. , 2004, Science.
[59] J F Bell,et al. Magnetic Properties Experiments on the Mars Exploration Rover Spirit at Gusev Crater , 2004, Science.
[60] Miles J. Johnson,et al. Athena Microscopic Imager investigation , 2003 .
[61] Raymond E. Arvidson,et al. Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .
[62] Raul A. Romero,et al. Athena Mars rover science investigation , 2003 .
[63] N. Bridges,et al. Selection of the Mars Exploration Rover landing sites , 2003 .
[64] Raymond E. Arvidson,et al. Mars Exploration Rover mission , 2003 .
[65] S. T. Elliot,et al. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .
[66] U. Bonnes,et al. Athena MIMOS II Mossbauer spectrometer investigation , 2003 .
[67] M. Klimesh,et al. The ICER Progressive Wavelet Image Compressor , 2003 .
[68] Mark Maimone,et al. Mars exploration rover engineering cameras , 2001, Remote Sensing.
[69] B. Hapke. Theory of reflectance and emittance spectroscopy , 1993 .
[70] B. R. White,et al. Saltation threshold on Earth, Mars and Venus , 1982 .
[71] L. Soderblom,et al. Radiometric performance of the Voyager cameras , 1981 .
[72] M. J. Le Bas. Carbonatite magmas , 1981, Mineralogical Magazine.