Overview of Spirit Microscopic Imager Results

This paper provides an overview of Mars Exploration Rover Spirit Microscopic Imager (MI) operations and the calibration, processing, and analysis of MI data. The focus of this overview is on the last five Earth years (2005–2010) of Spirit's mission in Gusev crater, supplementing the previous overview of the first 450 sols of the Spirit MI investigation. Updates to radiometric calibration using in‐flight data and improvements in high‐level processing are summarized. Released data products are described, and a table of MI observations, including target/feature names and associated data sets, is appended. The MI observed natural and disturbed exposures of rocks and soils as well as magnets and other rover hardware. These hand‐lens‐scale observations have provided key constraints on interpretations of the formation and geologic history of features, rocks, and soils examined by Spirit. MI images complement observations by other Spirit instruments, and together show that impact and volcanic processes have dominated the origin and evolution of the rocks in Gusev crater, with aqueous activity indicated by the presence of silica‐rich rocks and sulfate‐rich soils. The textures of some of the silica‐rich rocks are similar to terrestrial hot spring deposits, and observations of subsurface cemented layers indicate recent aqueous mobilization of sulfates in places. Wind action has recently modified soils and abraded many of the rocks imaged by the MI, as observed at other Mars landing sites.

[1]  V. Hamilton,et al.  Wishstone to Watchtower: Amorphous alteration of plagioclase-rich rocks in Gusev crater, Mars , 2017 .

[2]  S. Ruff,et al.  Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile , 2016, Nature Communications.

[3]  S. Cole Petrology, Stratigraphy, And Geologic History Of Husband Hill, Gusev Crater, Mars , 2015 .

[4]  A. Knoll,et al.  Sands at Gusev Crater, Mars , 2014 .

[5]  K. Herkenhoff,et al.  Similar Microtextures in Watchtower and Comanche Class Rocks at Gusev Crater , 2014 .

[6]  S. Ruff,et al.  Evidence for a Noachian-Aged Ephemeral Lake in Gusev Crater, Mars , 2014 .

[7]  Suniti Karunatillake,et al.  A martian case study of segmenting images automatically for granulometry and sedimentology, Part 1: Algorithm , 2014 .

[8]  Jonathan M. Husch,et al.  Segmenting images automatically for granulometry and sedimentology: a martian case study , 2013 .

[9]  V. Hamilton,et al.  Distribution and characteristics of Adirondack-class basalt as observed by Mini-TES in Gusev crater, Mars and its possible volcanic source , 2012 .

[10]  K. Herkenhoff,et al.  Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rov , 2011 .

[11]  Jeffrey R. Johnson,et al.  Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations , 2011 .

[12]  H. McSween,et al.  Origin of basaltic soils at Gusev crater, Mars, by aeolian modification of impact-generated sediment , 2011 .

[13]  Jeffrey R. Johnson,et al.  Temporal observations of bright soil exposures at Gusev crater, Mars , 2011 .

[14]  Geoffrey A. Landis,et al.  Pancam and Microscopic Imager observations of dust on the Spirit Rover: Cleaning events, spectral properties, and aggregates , 2010 .

[15]  Raymond E. Arvidson,et al.  Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover , 2010, Science.

[16]  Jeffrey R. Johnson,et al.  Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater , 2010 .

[17]  L. Crumpler,et al.  Constraints on the geologic history of “Home Plate” materials provided by clast morphology and texture , 2010 .

[18]  G. Landis,et al.  Gusev Crater, Mars: Observations of three dust devil seasons , 2010 .

[19]  K. Herkenhoff,et al.  Regional and grain size influences on the geochemistry of soil at Gusev crater, Mars , 2010 .

[20]  Recent Spirit Results: Microscopic Imager Analysis of Particle Properties in Scamander Crater, West of Home Plate , 2010 .

[21]  Jeffrey R. Johnson,et al.  Overview of the magnetic properties experiments on the Mars Exploration Rovers , 2009 .

[22]  D. Ming,et al.  Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate , 2008 .

[23]  D. Ming,et al.  Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover , 2008 .

[24]  William H. Farrand,et al.  Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate , 2008 .

[25]  N. Cabrol,et al.  Morphology and texture of particles along the Spirit rover traverse from sol 450 to sol 745 , 2008 .

[26]  William H. Farrand,et al.  Light-toned salty soils and coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills , 2008 .

[27]  William H. Farrand,et al.  Rock spectral classes observed by the Spirit Rover's Pancam on the Gusev Crater Plains and in the Columbia Hills , 2008 .

[28]  Trent M. Hare,et al.  Surface processes recorded by rocks and soils on Meridiani Planum, Mars: Microscopic Imager observations during Opportunity's first three extended missions , 2008 .

[29]  Jeffrey R. Johnson,et al.  Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater , 2008 .

[30]  J. Grant,et al.  Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars , 2008 .

[31]  E. A. Guinness,et al.  In-situ observations of the physical properties of the Martian surface , 2008 .

[32]  James F. Bell,et al.  Mars Exploration Rover Navigation Camera in‐flight calibration , 2008 .

[33]  Jeffrey R. Johnson,et al.  Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles class soils , 2008 .

[34]  Rongxing Li,et al.  Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven , 2008 .

[35]  William H. Farrand,et al.  Hydrothermal origin of halogens at Home Plate, Gusev Crater , 2008 .

[36]  S. Squyres,et al.  Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle X‐Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra , 2008 .

[37]  K. Di,et al.  Columbia Hills, Mars: Aeolian features seen from the ground and orbit , 2008 .

[38]  D. Ming,et al.  Detection of Silica-Rich Deposits on Mars , 2008, Science.

[39]  K. Herkenhoff,et al.  Wind-driven Particle Mobility on Mars: Insights from MER Observations at , 2007 .

[40]  Jeffrey R. Johnson,et al.  Mineralogic constraints on sulfur‐rich soils from Pancam spectra at Gusev crater, Mars , 2007 .

[41]  K. Herkenhoff,et al.  Linking Home Plate and Algonquin Class Rocks through Microtextural Analysis: Evidence for Hydrovolcanism in the Inner Basin of Columbia Hills, Gusev Crater , 2007 .

[42]  D. Ming,et al.  Evidence for Montmorillonite or its Compositional Equivalent in Columbia Hills, Mars , 2007 .

[43]  A. F. C. Haldemann,et al.  Pyroclastic Activity at Home Plate in Gusev Crater, Mars , 2007, Science.

[44]  Jeffrey R. Johnson,et al.  The rocks of Gusev Crater as viewed by the Mini‐TES instrument , 2006 .

[45]  S. Squyres,et al.  Structure and stratigraphy of Home Plate from the Spirit Mars Exploration Rover , 2006 .

[46]  Richard V. Morris,et al.  Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars , 2006 .

[47]  Nathalie A. Cabrol,et al.  Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater , 2006 .

[48]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[49]  William H. Farrand,et al.  Rocks of the Columbia Hills , 2006 .

[50]  Nathalie A. Cabrol,et al.  Gusev crater: Wind‐related features and processes observed by the Mars Exploration Rover Spirit , 2006 .

[51]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[52]  Raymond E. Arvidson,et al.  In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars , 2006 .

[53]  William H. Farrand,et al.  Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .

[54]  Jeffrey R. Johnson,et al.  Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars , 2006 .

[55]  Charles K. Thompson,et al.  Processing of Mars Exploration Rover Imagery for Science and Operations Planning , 2006 .

[56]  Miles J. Johnson,et al.  In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .

[57]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[58]  P H Smith,et al.  Textures of the soils and rocks at Gusev Crater from Spirit's Microscopic Imager. , 2004, Science.

[59]  J F Bell,et al.  Magnetic Properties Experiments on the Mars Exploration Rover Spirit at Gusev Crater , 2004, Science.

[60]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[61]  Raymond E. Arvidson,et al.  Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .

[62]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[63]  N. Bridges,et al.  Selection of the Mars Exploration Rover landing sites , 2003 .

[64]  Raymond E. Arvidson,et al.  Mars Exploration Rover mission , 2003 .

[65]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[66]  U. Bonnes,et al.  Athena MIMOS II Mossbauer spectrometer investigation , 2003 .

[67]  M. Klimesh,et al.  The ICER Progressive Wavelet Image Compressor , 2003 .

[68]  Mark Maimone,et al.  Mars exploration rover engineering cameras , 2001, Remote Sensing.

[69]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[70]  B. R. White,et al.  Saltation threshold on Earth, Mars and Venus , 1982 .

[71]  L. Soderblom,et al.  Radiometric performance of the Voyager cameras , 1981 .

[72]  M. J. Le Bas Carbonatite magmas , 1981, Mineralogical Magazine.