Automated Generation of Search Tree Algorithms for Hard Graph Modification Problems

Abstract We present a framework for an automated generation of exact search tree algorithms for NP-hard problems. The purpose of our approach is twofold—rapid development and improved upper bounds. Many search tree algorithms for various problems in the literature are based on complicated case distinctions. Our approach may lead to a much simpler process of developing and analyzing these algorithms. Moreover, using the sheer computing power of machines it may also lead to improved upper bounds on search tree sizes (i.e., faster exact solving algorithms) in comparison with previously developed “hand-made” search trees. Among others, such an example is given with the NP-complete Cluster Editing problem (also known as Correlation Clustering on complete unweighted graphs), which asks for the minimum number of edge additions and deletions to create a graph which is a disjoint union of cliques. The hand-made search tree for Cluster Editing had worst-case size O(2.27k), which now is improved to O(1.92k) due to our new method. (Herein, k denotes the number of edge modifications allowed.)

[1]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[2]  Falk Hüffner Graph Modification Problems and Automated Search Tree Generation , 2003 .

[3]  Oliver Kullmann,et al.  New Methods for 3-SAT Decision and Worst-case Analysis , 1999, Theor. Comput. Sci..

[4]  Peter Jonsson,et al.  An algorithm for counting maximum weighted independent sets and its applications , 2002, SODA '02.

[5]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[6]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[7]  R. Sharan,et al.  CLICK: a clustering algorithm with applications to gene expression analysis. , 2000, Proceedings. International Conference on Intelligent Systems for Molecular Biology.

[8]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[9]  Sergey I. Nikolenko,et al.  Worst-case upper bounds for SAT: automated proof , 2003 .

[10]  Venkatesan Guruswami,et al.  Clustering with qualitative information , 2005, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[11]  R. Sharan,et al.  Complexity classication of some edge modication problems , 1999 .

[12]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..

[13]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 1999, J. Algorithms.

[14]  Edward A. HIRSCH,et al.  A 2^{n/6.15}-Time Algorithm For X3sat , 2002 .

[15]  Rolf Niedermeier,et al.  New Worst-Case Upper Bounds for MAX-2-SAT with Application to MAX-CUT , 2000, Electron. Colloquium Comput. Complex..

[16]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[17]  Rolf Niedermeier,et al.  Graph-Modeled Data Clustering: Fixed-Parameter Algorithms for Clique Generation , 2003, CIAC.

[18]  Jianer Chen,et al.  Improved exact algorithms for MAX-SAT , 2002, Discret. Appl. Math..

[19]  Rolf Niedermeier,et al.  Faster exact algorithms for hard problems: A parameterized point of view , 2001, Discret. Math..

[20]  Alexander S. Kulikov,et al.  Automated Proofs of Upper Bounds on the Running Time of Splitting Algorithms , 2004, IWPEC.

[21]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[22]  David Peleg,et al.  Faster exact solutions for some NP-hard problems , 2002, Theor. Comput. Sci..

[23]  Roded Sharan,et al.  Complexity classification of some edge modification problems , 1999, Discret. Appl. Math..

[24]  Roded Sharan,et al.  Center CLICK: A Clustering Algorithm with Applications to Gene Expression Analysis , 2000, ISMB.

[25]  Rolf Niedermeier,et al.  An efficient fixed-parameter algorithm for 3-Hitting Set , 2003, J. Discrete Algorithms.

[26]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[27]  Mirko Krivánek,et al.  NP-hard problems in hierarchical-tree clustering , 1986, Acta Informatica.

[28]  Rolf Niedermeier,et al.  An Efficient Exact Algorithm for Constraint Bipartite Vertex Cover , 1999, J. Algorithms.

[29]  Amos Fiat,et al.  Correlation Clustering - Minimizing Disagreements on Arbitrary Weighted Graphs , 2003, ESA.

[30]  Roded Sharan,et al.  Cluster graph modification problems , 2002, Discret. Appl. Math..

[31]  Michael R. Fellows,et al.  Parameterized Complexity: The Main Ideas and Connections to Practical Computing , 2000, Experimental Algorithmics.

[32]  Rolf Niedermeier,et al.  New Upper Bounds for Maximum Satisfiability , 2000, J. Algorithms.

[33]  Edward A. Hirsch,et al.  New Worst-Case Upper Bounds for SAT , 2000, Journal of Automated Reasoning.

[34]  Venkatesh Raman,et al.  Upper Bounds for MaxSat: Further Improved , 1999, ISAAC.

[35]  A. S. Kulikov An upper bound O(20.16254n) for exact 3-satisfiability: a simpler proof , 2005 .

[36]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[37]  Evgeny Dantsin,et al.  Algorithms for Sat and Upper Bounds on Their Complexity , 2003, Electron. Colloquium Comput. Complex..

[38]  Rolf Niedermeier,et al.  Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT , 2003, Discret. Appl. Math..

[39]  Rolf Niedermeier,et al.  On Efficient Fixed Parameter Algorithms for WEIGHTED VERTEX COVER , 2000, ISAAC.

[40]  Nicole Immorlica,et al.  Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques , 2003, Lecture Notes in Computer Science.

[41]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..