Statistical 3D 'atomistic' simulation of decanano MOSFETs

Abstract A 3D statistical ‘atomistic’ simulation technique has been developed to study the effect of the random dopant induced parameter fluctuations in aggressively scaled MOSFETs. Efficient implementation of the ‘atomistic’ simulation approach has been used to investigate the threshold voltage standard deviation and lowering in the case of uniformly doped MOSFETs, and in fluctuation-resistant architectures utilising epitaxial-layers and delta-doping. The effect of the random doping in the polysilicon gate on the threshold voltage fluctuations has also been thoroughly investigated. The influence of a single-charge trapping on the channel conductivity in decanano MOSFETs is studied in the ‘atomistic’ framework as well. Quantum effects are taken into consideration in our ‘atomistic’ simulations using the density gradient formalism.

[1]  G. Iafrate,et al.  Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.

[2]  Subhash Saini,et al.  Hierarchical approach to "atomistic" 3-D MOSFET simulation , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  S. Saini,et al.  Quantum mechanical enhancement of the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[4]  C. Mead,et al.  Fundamental limitations in microelectronics—I. MOS technology , 1972 .

[5]  Chenming Hu,et al.  A 0.1-/spl mu/m delta-doped MOSFET fabricated with post-low-energy implanting selective epitaxy , 1998 .

[6]  S. Saini,et al.  Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1-/spl mu/m MOSFET's with epitaxial and /spl delta/-doped channels , 1999 .

[7]  J.D. Bude,et al.  Gate capacitance attenuation in MOS devices with thin gate dielectrics , 1996, IEEE Electron Device Letters.

[8]  H. Gummel A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .

[9]  A. Toriumi,et al.  Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET's , 1994 .

[10]  M. R. Pinto,et al.  Electron and hole quantization and their impact on deep submicron silicon p- and n-MOSFET characteristics , 1997 .

[11]  S. Saini,et al.  Polysilicon gate enhancement of the random dopant induced threshold voltage fluctuations in sub-100 nm MOSFETs with ultrathin gate oxide , 2000 .

[12]  Michel Steyaert,et al.  Threshold voltage mismatch in short-channel MOS transistors , 1994 .

[13]  P. Stolk,et al.  Modeling statistical dopant fluctuations in MOS transistors , 1998 .

[14]  K. R. Lakshmikumar,et al.  Characterisation and modeling of mismatch in MOS transistors for precision analog design , 1986 .

[15]  M. Ancona,et al.  Macroscopic physics of the silicon inversion layer. , 1987, Physical review. B, Condensed matter.

[16]  T. Mikolajick,et al.  Influence of statistical dopant fluctuations on MOS transistors with deep submicron channel lengths , 1993 .

[17]  D. Vasileska,et al.  Modeling of deep-submicrometer MOSFETs: random impurity effects, threshold voltage shifts and gate capacitance attenuation , 1998, 1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116).

[18]  S. Sridhar,et al.  Improved BRT structures fabricated using SIMOX technology , 1996, IEEE Electron Device Letters.

[19]  Naoyuki Shigyo,et al.  Effects of microscopic fluctuations in dopant distributions on MOSFET threshold voltage , 1992 .

[20]  R.W. Keyes,et al.  Physical limits in digital electronics , 1975, Proceedings of the IEEE.

[21]  Karl Goser,et al.  Matching analysis of deposition defined 50-nm MOSFET's , 1998 .

[22]  A. Asenov Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFET's: A 3-D "atomistic" simulation study , 1998 .