A convergence theorem of fuzzy-valued martingales in the extended Hausdorff metric H[infin]

In this paper, we shall give a new embedding method to prove a convergence theorem for fuzzy-valued random variables in the sense of the extended Hausdorff metric H∞, without the restriction of fuzzy sets satisfying the Lipschitz condition.

[1]  M. Puri,et al.  Limit theorems for fuzzy random variables , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Ma Ming On embedding problems of fuzzy number spaces. IV , 1993 .

[3]  Yukio Ogura,et al.  Convergence of set-valued and fuzzy-valued martingales , 1999, Fuzzy Sets Syst..

[4]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[5]  H. Rådström An embedding theorem for spaces of convex sets , 1952 .

[6]  Yukio Ogura,et al.  Separability for graph convergence of sequences of fuzzy-valued random variables , 2001, Fuzzy Sets Syst..

[7]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[8]  G. Debreu Integration of correspondences , 1967 .

[9]  Nikolaos S. Papageorgiou On the theory of Banach space valued multifunctions. 1. Integration and conditional expectation , 1985 .

[10]  Yukio Ogura,et al.  Convergence of set valued sub- and supermartingales in the Kuratowski-Mosco sense , 1998 .

[11]  Nikolaos S. Papageorgiou On the theory of Banach space valued multifunctions. 2. Set valued martingales and set valued measures , 1985 .

[12]  Yukio Ogura,et al.  Convergence in graph for fuzzy valued martingales and smartingales , 2002 .

[13]  F. Hiai,et al.  Integrals, conditional expectations, and martingales of multivalued functions , 1977 .

[14]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[15]  Bobby Schmidt,et al.  Fuzzy math , 2001 .

[16]  Christian Hess,et al.  On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence , 1991 .

[17]  L. Hörmander Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .

[18]  Hung T. Nguyen,et al.  Gaussian processes and martingales for fuzzy valued random variables with continuous parameter , 2001, Inf. Sci..

[19]  F. Hiai Strong laws of large numbers for multivalued random variables , 1984 .

[20]  Yukio Ogura,et al.  Set Defuzzification and Choquet Integral , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[21]  V. Kreinovich,et al.  Fuzzy Set-Valued Random Variables , 2002 .

[22]  Z. Artstein,et al.  A Strong Law of Large Numbers for Random Compact Sets , 1975 .

[23]  M. Puri,et al.  Convergence theorem for fuzzy martingales , 1991 .

[24]  A. C. Thompson,et al.  Theory of correspondences : including applications to mathematical economics , 1984 .

[25]  M. Ming On embedding problems of fuzzy number spaces. Part 4 , 1993 .

[26]  Srishti D. Chatterji,et al.  Martingale Convergence and the Radon-Nikodym Theorem in Banach Spaces. , 1968 .

[27]  Gerald Beer,et al.  Topologies on Closed and Closed Convex Sets , 1993 .

[28]  Peter E. Kloeden,et al.  Characterization of compact subsets of fuzzy sets , 1989 .