Ripser.py: A Lean Persistent Homology Library for Python

Topological data analysis (TDA) (Edelsbrunner & Harer, 2010), (Carlsson, 2009) is a field focused on understanding the shape and structure of data by computing topological descriptors that summarize features as connected components, loops, and voids. TDA has found wide applications across nonlinear time series analysis (Perea & Harer, 2015), computer vision (Perea & Carlsson, 2014), computational neuroscience (Giusti, Pastalkova, Curto, & Itskov, 2015), (Bendich, Marron, Miller, Pieloch, & Skwerer, 2016), computational biology (Iyer-Pascuzzi et al., 2010), (Wu et al., 2017), and materials science (Kramar, Goullet, Kondic, & Mischaikow, 2013), to name a few of the many areas of impact in recent years.

[1]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[2]  Jose A. Perea,et al.  (Quasi)Periodicity Quantification in Video Data, Using Topology , 2017, SIAM J. Imaging Sci..

[3]  P. Benfey,et al.  Imaging and Analysis Platform for Automatic Phenotyping and Trait Ranking of Plant Root Systems1[W][OA] , 2010, Plant Physiology.

[4]  Jose A. Perea,et al.  A Klein-Bottle-Based Dictionary for Texture Representation , 2014, International Journal of Computer Vision.

[5]  Jose A. Perea Multiscale Projective Coordinates via Persistent Cohomology of Sparse Filtrations , 2016, Discrete & Computational Geometry.

[6]  J. Marron,et al.  Persistent Homology Analysis of Brain Artery Trees. , 2014, The annals of applied statistics.

[7]  Vin de Silva,et al.  Persistent Cohomology and Circular Coordinates , 2009, SCG '09.

[8]  Matthew Berger,et al.  Topological Eulerian Synthesis of Slow Motion Periodic Videos , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[9]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[10]  Matthew S. Goodwin Automated Detection of Stereotypical Motor Movements in Children with Autism Spectrum Disorder Using Geometric Feature Fusion , 2018 .

[11]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[12]  Yasuaki Hiraoka,et al.  Persistence diagrams with linear machine learning models , 2017, Journal of Applied and Computational Topology.

[13]  Changhe Yuan,et al.  Optimal Topological Cycles and Their Application in Cardiac Trabeculae Restoration , 2017, IPMI.

[14]  E. Pastalkova,et al.  Clique topology reveals intrinsic geometric structure in neural correlations , 2015, Proceedings of the National Academy of Sciences.

[15]  Jose A. Perea,et al.  Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis , 2013, Found. Comput. Math..

[16]  M. Kramár,et al.  Persistence of force networks in compressed granular media. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Nicholas J. Cavanna,et al.  A Geometric Perspective on Sparse Filtrations , 2015, CCCG.