The double cover of the icosahedral symmetry group and quark mass textures

Abstract We investigate the idea that the double cover of the rotational icosahedral symmetry group is the family symmetry group in the quark sector. The icosahedral ( A 5 ) group was previously proposed as a viable family symmetry group for the leptons. To incorporate the quarks, it is highly advantageous to extend the group to its double cover, as in the case of tetrahedral ( A 4 ) symmetry. We provide the basic group theoretical tools for flavor model-building based on the binary icosahedral group I ′ and construct a model of the quark masses and mixings that yields many of the successful predictions of the well-known U ( 2 ) quark texture models.

[1]  L. Merlo,et al.  Fermion masses and mixings in a S4 based model , 2009, 0901.2086.

[2]  Alessandro Strumia,et al.  Golden ratio prediction for solar neutrino mixing , 2007, 0705.4559.

[3]  P. Ramond,et al.  Tri-bimaximal neutrino mixing and the family symmetry Z 7 ⋊Z 3 , 2007, 0706.2341.

[4]  M. Tanimoto,et al.  Deviation from Tri-Bimaximal Neutrino Mixing in A4 Flavor Symmetry , 2007, 0801.0181.

[5]  Z. Maki,et al.  Remarks on the unified model of elementary particles , 1962 .

[6]  Mu-Chun Chen,et al.  Group theoretical origin of CP violation , 2009, 0904.1721.

[7]  A. Smirnov,et al.  Lepton mixing and cancellation of the Dirac mass hierarchy in SO(10) GUTs with flavor symmetries T-7 and Sigma(81) , 2008, 0811.2955.

[8]  J. Farine,et al.  Measurement of the rate of ve + d → p + p + e- interactions produced by 8B solar neutrinos at the sudbury neutrino observatory , 2001 .

[9]  G. Shaviv,et al.  Present Status of the Theoretical Predictions for the ^(37)Cl Solar-Neutrino Experiment , 1968 .

[10]  C. Luhn,et al.  The flavor group Δ(6n2) , 2008, 0809.0639.

[11]  S Hatakeyama,et al.  First results from KamLAND: evidence for reactor antineutrino disappearance. , 2003, Physical review letters.

[12]  A. Mondragon,et al.  Lepton masses, mixings, and flavor-changing neutral currents in a minimal S 3 -invariant extension of the standard model , 2007, 0706.0354.

[13]  A. Aranda Neutrino mixing from the double tetrahedral group T , 2007, 0707.3661.

[14]  Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station , 2003, hep-ex/0301017.

[15]  Thomas W. Kephart,et al.  Flavor symmetry for quarks and leptons , 2007, 0706.1186.

[16]  A. Mullin,et al.  Group Theory and its Applications to Physical Problems , 1962 .

[17]  T. O'donnell Precision measurement of neutrino oscillation parameters with KamLAND , 2008 .

[18]  Lepton mixing angle $\theta_{13} = 0$ with a horizontal symmetry $D_4$ , 2004, hep-ph/0407112.

[19]  H. Nielsen,et al.  Hierarchy of Quark Masses, Cabibbo Angles and CP Violation , 1979 .

[20]  D 6 family symmetry and cold dark matter at CERN LHC , 2006, hep-ph/0610072.

[21]  G. Altarelli,et al.  Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions , 2005, hep-ph/0504165.

[23]  J. Valle,et al.  Three-flavour neutrino oscillation update , 2008, 0808.2016.

[24]  E. Ma Neutrino Mass Matrix from Delta(27) Symmetry , 2006, hep-ph/0607056.

[25]  Hexagonal theory of flavor , 1999, hep-ph/9905275.

[26]  Tatsuo C. Kobayashi,et al.  Soft supersymmetry breaking terms from D(4) x Z(2) lepton flavor symmetry , 2008, 0803.0796.

[27]  A 4 symmetry and neutrinos with very different masses , 2004, hep-ph/0404199.

[28]  J. Lomont,et al.  Applications of finite groups , 1959 .

[29]  Obtaining the neutrino mixing matrix with the tetrahedral group , 2005, hep-ph/0508278.

[30]  E. Pallante,et al.  An A4 flavor model for quarks and leptons in warped geometry , 2010, 1004.0321.

[31]  L. Lavoura,et al.  A Discrete symmetry group for maximal atmospheric neutrino mixing , 2003, hep-ph/0305046.

[32]  R. Mohapatra,et al.  S4 flavor symmetry and fermion masses: towards a grand unified theory of flavor , 2006, hep-ph/0602244.

[33]  P. Ramond,et al.  Flavor group Δ(3n2) , 2007 .

[34]  H. Okada,et al.  S 4 ×Z 2 flavor symmetry in supersymmetric extra U(1) model , 2009, 0910.3370.

[35]  Models of Neutrino Masses and Mixings , 2001, hep-ph/0106085.

[36]  M. Lindner,et al.  Fermion Masses and Mixings from Dihedral Flavor Symmetries with Preserved Subgroups , 2007, 0709.3450.

[37]  E. Ma Aspects of the tetrahedral neutrino mass matrix , 2005, hep-ph/0505209.

[38]  J. Bahcall SOLAR NEUTRINOS. I. THEORETICAL , 1964 .

[39]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[40]  M. Frigerio,et al.  Common origin of $\theta_{13}$ and Delta m**2{12} in a model of neutrino mass with quaternion symmetry , 2007, 0708.0166.

[41]  R. Lebed,et al.  Maximal neutrino mixing from a minimal flavor symmetry , 2000, hep-ph/0002044.

[42]  L. Everett,et al.  Icosahedral (A(5)) Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing , 2008, 0812.1057.

[43]  P. Ramond,et al.  Simple finite non-Abelian flavor groups , 2007, 0709.1447.

[44]  J. Bahcall,et al.  Solar neutrinos: a scientific puzzle. , 1975, Science.

[45]  I. Iben,et al.  Solar neutrino flux , 1963 .

[46]  L. Wolfenstein,et al.  Consequences of approximate S(3) symmetry of the neutrino mass matrix , 2007, 0709.3767.

[47]  E. Torrente-Lujan,et al.  Neutrino masses and tribimaximal mixing in the minimal renormalizable SUSY , 2009 .

[48]  E. Ma,et al.  Discrete symmetry and CP phase of the quark mixing matrix , 2005, hep-ph/0505064.

[49]  Indications of neutrino oscillation in a 250 km long-baseline experiment. , 2002, Physical review letters.

[50]  E. Ma,et al.  Softly broken A(4) symmetry for nearly degenerate neutrino masses , 2001, hep-ph/0106291.

[51]  Y. Koide S4 flavor symmetry embedded into SU(3) and lepton masses and mixing , 2007, 0705.2275.

[52]  Gui-Jun Ding Fermion mass hierarchies and flavor mixing from T ' symmetry , 2008, 0803.2278.

[53]  W. G. Scott,et al.  Tri-bimaximal mixing and the neutrino oscillation data , 2002 .

[54]  E. Ma Neutrino mass matrix from S 4 symmetry , 2005, hep-ph/0508231.

[55]  A. Blum,et al.  The Cabibbo angle in a supersymmetric D-14 model , 2009, 0902.4885.

[56]  G. Altarelli,et al.  A SUSY SU(5) grand unified model of tri-bimaximal mixing from A4 , 2008, 0802.0090.

[57]  Quintics with Finite Simple Symmetries , 2008, 0803.0526.

[58]  E. Ma Near tribimaximal neutrino mixing with Δ(27) symmetry , 2007, 0709.0507.

[59]  R. Davis Solar Neutrinos. II. Experimental , 1964 .

[60]  R. Gilmore,et al.  Group Theory , 2010 .

[61]  Mu-Chun Chen,et al.  Viable Randall-Sundrum model for quarks and leptons with T' family symmetry , 2009, 0907.3963.

[62]  Tatsuo C. Kobayashi,et al.  Non-Abelian Discrete Symmetries in Particle Physics , 2010, 1003.3552.

[63]  T. Kajita,et al.  Observation of atmospheric neutrinos , 2001 .

[64]  M. Frigerio,et al.  Publisher's Note: Large neutrino mixing and normal mass hierarchy: A discrete understanding [Phys. Rev. D 70, 073008 (2004)] , 2004 .

[65]  K. Inoue Reactor neutrino oscillation studies with KamLAND , 2004 .

[66]  J. Valle,et al.  Underlying A4 symmetry for the neutrino mass matrix and the quark mixing matrix , 2002, hep-ph/0206292.

[67]  Flavor S_4 times Z_2 symmetry and neutrino mixing , 2006, hep-ph/0612214.

[68]  M. Mitra,et al.  Lepton masses in a minimal model with triplet Higgs bosons and S 3 flavor symmetry , 2008, 0806.3254.

[69]  Tatsuo C. Kobayashi,et al.  D 4 flavor symmetry for neutrino masses and mixing , 2008, 0802.2310.

[70]  S. King,et al.  A new family symmetry for SO(10)SO(10) GUTs , 2009, 0905.1686.

[71]  H. Murayama,et al.  Theory of neutrinos: a white paper , 2005, hep-ph/0510213.

[72]  J. Patera,et al.  Polynomial icosahedral invariants , 1988 .

[73]  L. Merlo,et al.  The interplay between GUT and flavour symmetries in a Pati-Salam × S4 model , 2010, 1003.4502.

[74]  L. Hall,et al.  Predictions from a U(2) flavour symmetry in supersymmetric theories , 1995, hep-ph/9512388.

[75]  S. King,et al.  A supersymmetric grand unified theory of flavour with PSL2(7)×SO(10)PSL2(7)×SO(10) , 2009, 0912.1344.

[76]  P. Frampton,et al.  Simplified renormalizable T' model for tribimaximal mixing and Cabibbo angle , 2008, 0807.4713.

[77]  L. Hall,et al.  UNIFIED THEORIES WITH U(2) FLAVOR SYMMETRY , 1996, hep-ph/9610449.

[78]  A. Sakharov,et al.  Horizontal unification as the phenomenology of the theory of ``everything'' , 1994 .

[79]  P. Creminelli,et al.  Neutrino mixings from a U(2) flavour symmetry , 1999, hep-ph/9903460.

[80]  The discrete flavor symmetry D5 , 2006, hep-ph/0604265.

[81]  S. King,et al.  A SUSY GUT of flavour with S4 × SU(5) to NLO , 2010, 1003.4249.

[82]  L. Gosset,et al.  GALLEX solar neutrino observations: Results for GALLEX IV , 1996 .

[83]  C. Yuan,et al.  $B$ meson signatures of a supersymmetric U(2) flavor model , 2004, hep-ph/0410181.

[84]  S. Kim,et al.  Erratum: Measurements of the Solar Neutrino Flux from Super-Kamiokande's First 300 Days [Phys. Rev. Lett. 81, 1158 (1998)] , 1998 .

[85]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[86]  E. Blaufuss,et al.  Measurements of the solar neutrino flux from Super-Kamiokande's first 300 days , 1998 .

[87]  N. Haba,et al.  Discrete flavor symmetry, dynamical mass textures, and grand unification , 2005, hep-ph/0511108.

[88]  Y. Okada,et al.  Patterns of flavor signals in supersymmetric models , 2007, 0711.2935.

[89]  E. al.,et al.  Detection of accelerator produced neutrinos at a distance of 250-km , 2001, hep-ex/0103001.

[90]  A. Mondragon,et al.  The Flavor Symmetry , 2003, hep-ph/0302196.

[91]  W. Grimus,et al.  Principal series of finite subgroups of SU(3) , 2010, 1006.0098.

[92]  N. Backhouse,et al.  The representation theory of the icosahedral group , 1974 .

[93]  Mu-Chun Chen,et al.  CKM and tri-bimaximal MNS matrices in a SU (5)× T ) (d model , 2007, 0705.0714.

[94]  C. K. Lee,et al.  Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector , 1998 .

[95]  D. S. Harmer,et al.  Search for neutrinos from the sun , 1968 .

[96]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[97]  T. Kajita,et al.  Atmospheric neutrino results from Super-Kamiokande and Kamiokande — Evidence for νμ oscillations , 1998, hep-ex/9810001.

[98]  G. Altarelli,et al.  Tri-bimaximal neutrino mixing, A4 and the modular symmetry , 2005, hep-ph/0512103.

[99]  S. Kim,et al.  Evidence for oscillation of atmospheric neutrinos , 1998 .

[100]  The Flavor Physics in Unified Gauge Theory from an S3 × P Discrete Symmetry , 2005, hep-ph/0505113.

[101]  S. Petcov,et al.  Majorana Phases and Leptogenesis in See-Saw Models with A 4 Symmetry , 2009, 0908.0240.

[102]  Shapes and cycles arising at the steady bifurcation with icosahedral symmetry , 2004 .

[103]  Permutation symmetry, tri - bimaximal neutrino mixing and the S3 group characters , 2003, hep-ph/0302025.

[104]  S. King,et al.  SUSY SU ( 5 ) with singlet plus adjoint matter and A 4 family symmetry , 2010, 1004.3243.

[105]  Y. Grossman,et al.  Model of leptons from SO(3) → A4 , 2009, 0910.4392.

[106]  Z. Berezhiani,et al.  Cosmology of spontaneously broken gauge family symmetry with axion solution of strong CP-problem , 1991 .

[107]  L. Merlo,et al.  Lepton Flavour Violation in Models with A(4) Flavour Symmetry , 2008, 0807.3160.

[108]  R. Zwicky,et al.  Discrete minimal flavor violation , 2009, 0908.4182.

[109]  F. Ling,et al.  Correlated hierarchy, Dirac masses and large mixing angles , 2003, hep-ph/0306002.

[110]  A. Blum,et al.  Golden Ratio Prediction for Solar Neutrino Mixing , 2009, 0903.0531.

[111]  L. Merlo,et al.  Vacuum alignment in SUSY A4 models , 2009, 0910.4058.

[112]  Minoru Yoshida,et al.  Measurement of the Solar Neutrino Energy Spectrum Using Neutrino – Electron Scattering The Super-Kamiokande Collaboration , 1998 .