Evaluations of the von Kármán constant in the atmospheric surface layer

The von Kármán constant $k$ relates the flow speed profile in a wall-bounded shear flow to the stress at the surface. Recent laboratory studies in aerodynamically smooth flow report $k$ values that cluster around 0.42–0.43 and around 0.37–0.39. Recent data from the atmospheric boundary layer, where the flow is usually aerodynamically rough, are similarly ambiguous: $k$ is often reported to be significantly smaller than the canonical value 0.40, and two recent data sets suggest that $k$ decreases with increasing roughness Reynolds number $Re_{\ast}$. To this discussion, we bring two large atmospheric data sets that suggest $k$ is constant, 0.387$\,{\pm}\,$0.003, for $2\, {\le}\,\hbox{\it Re}_\ast \,{\le} \,100$. The data come from our yearlong deployment on Arctic sea ice during SHEBA, the experiment to study the Surface Heat Budget of the Arctic Ocean, and from over 800 h of observations over Antarctic sea ice on Ice Station Weddell (ISW). These were superb sites for atmospheric boundary-layer research; they were horizontally homogeneous, uncomplicated by topography, and unobstructed and uniform for hundreds of kilometres in all directions. During SHEBA, we instrumented a 20 m tower at five levels between 2 and 18 m with identical sonic anemometer/thermometers and, with these, measured hourly averaged values of the wind speed $U(z)$ and the stress $\tau (z)$ at each tower level $z$. On ISW, we measured the wind-speed profile with propeller anemometers at four heights between 0.5 and 4 m and measured $\tau $ with a sonic anemometer/thermometer at one height. On invoking strict quality controls, we gleaned 453 hourly $U(z)$ profiles from the SHEBA set and 100 from the ISW set. All of these profiles reflect near-neutral stratification, and each exhibits a logarithmic layer that extends over all sampling heights. By combining these profiles and our measurements of $\tau $, we made 553 independent determinations of $k$. This is, thus, the largest, most comprehensive atmospheric data set ever used to evaluate the von Kármán constant.

[1]  A. Smits,et al.  High Reynolds number turbulent pipe flow , 2005 .

[2]  P. Guest,et al.  Stable Boundary-Layer Scaling Regimes: The Sheba Data , 2005 .

[3]  Edgar L. Andreas,et al.  Parameterizing turbulent exchange over sea ice: the ice station weddell results , 2005 .

[4]  Alexander Smits,et al.  Further observations on the mean velocity distribution in fully developed pipe flow , 2004, Journal of Fluid Mechanics.

[5]  F. Durst,et al.  Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows , 2003 .

[6]  Walter B. Tucker,et al.  Thin and thinner: Sea ice mass balance measurements during SHEBA , 2003 .

[7]  E. F. Bradley,et al.  Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm , 2003 .

[8]  P. Guest,et al.  Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near‐surface conditions and surface energy budget , 2002 .

[9]  Walter B. Tucker,et al.  Aerial observations of the evolution of ice surface conditions during summer , 2002 .

[10]  Jon Holmgren,et al.  Winter snow cover on the sea ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA): Temporal evolution and spatial variability , 2002 .

[11]  Edgar L. Andreas,et al.  An annual cycle of Arctic surface cloud forcing at SHEBA : The surface heat budget of arctic ocen (SHEBA) , 2002 .

[12]  B. Hicks,et al.  Comments on “Critical Test of the Validity of Monin–Obukhov Similarity during Convective Conditions” , 2002 .

[13]  E. L. Andreas Parameterizing Scalar Transfer over Snow and Ice: A Review , 2002 .

[14]  R. Bintanja A New Power-Law Relation For The Vertical Distribution of Suspended Matter , 2002 .

[15]  J. Curry,et al.  Surface Heat Budget of the Arctic Ocean , 2002 .

[16]  E. Pravatà,et al.  Reply , 2001, British Journal of Cancer.

[17]  M. S. Chong,et al.  A possible reinterpretation of the Princeton superpipe data , 2001, Journal of Fluid Mechanics.

[18]  P. L. Finkelstein,et al.  Sampling error in eddy correlation flux measurements , 2001 .

[19]  E. L. Andreas,et al.  Low-Level Atmospheric Jets And Inversions Over The Western Weddell Sea , 2000, Boundary-Layer Meteorology.

[20]  E. L. Andreas,et al.  Averaging Intervals For Spectral Analysis Of Nonstationary Turbulence , 2000 .

[21]  E. L. Andreas,et al.  Comments on “A Physical Interpretation of von Kármán’s Constant Based on Asymptotic Considerations—A New Value” , 2000 .

[22]  Edgar L. Andreas,et al.  Heat budget of snow-covered sea ice at North Pole 4 , 1999 .

[23]  A. Smits,et al.  Mean-flow scaling of turbulent pipe flow , 1998, Journal of Fluid Mechanics.

[24]  Larry Mahrt,et al.  Flux Sampling Errors for Aircraft and Towers , 1998 .

[25]  A. D. Sarma,et al.  Statistics of Surface-Layer Turbulence Over Terrain with Metre-Scale Heterogeneity , 1998 .

[26]  J. Wyngaard,et al.  How Close is Close Enough When Measuring Scalar Fluxes with Displaced Sensors , 1997 .

[27]  E. L. Andreas The Atmospheric Boundary Layer Over Polar Marine Surfaces. , 1996 .

[28]  John C. LaRue,et al.  Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions , 1996 .

[29]  U. Högström Review of some basic characteristics of the atmospheric surface layer , 1996 .

[30]  E. F. Bradley,et al.  Bulk parameterization of air‐sea fluxes for Tropical Ocean‐Global Atmosphere Coupled‐Ocean Atmosphere Response Experiment , 1996 .

[31]  C. A. Vogel,et al.  A further note “on the magnitude and apparent range of variation of the von karman constant” , 1995 .

[32]  E. L. Andreas,et al.  Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements , 1995 .

[33]  Christoph A. Vogel,et al.  On the magnitude and apparent range of variation of the von Karman constant in the atmospheric surface layer , 1995 .

[34]  J. Garratt,et al.  Review: the atmospheric boundary layer , 1994 .

[35]  P. Wiberg,et al.  Evaluation of von Karman's Constant from Integral Flow Parameters , 1993 .

[36]  S. Larsen,et al.  Measurement of temperature spectra by a sonic anemometer , 1993 .

[37]  R. Kronmal Spurious Correlation and the Fallacy of the Ratio Standard Revisited , 1993 .

[38]  Arnold L. Gordon,et al.  Weddell Sea exploration from ice station , 1993 .

[39]  Jon Wiernga Representative roughness parameters for homogeneous terrain , 1993 .

[40]  E. L. Andreas Uncertainty in a Path-averaged Measurement of the Friction Velocity u* , 1992 .

[41]  Jonathan D. W. Kahl,et al.  Low-Level Temperature Inversions of the Eurasian Arctic and Comparisons with Soviet Drifting Station Data , 1992 .

[42]  J. Kaimal,et al.  Another look at sonic thermometry , 1991 .

[43]  Kenneth L. Davidson,et al.  The aerodynamic roughness of different types of sea ice , 1991 .

[44]  J. Kaimal,et al.  Minimizing flow distortion errors in a sonic anemometer , 1990 .

[45]  Jonathan D. W. Kahl,et al.  Characteristics of the low‐level temperature inversion along the Alaskan Arctic coast , 1990 .

[46]  J. Inoue Surface drag over the snow surface of the Antarctic Plateau: 1. Factors controlling surface drag over the katabatic wind region , 1989 .

[47]  Manfred Kraft,et al.  On "User's Guide to Ratio Variables , 1987 .

[48]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986, Physical review letters.

[49]  J. Businger,et al.  Comments on “Von K´rm´n's Constant in Atmospheric Boundary Layer Flow: Reevaluated” , 1986 .

[50]  C. J. Moore Frequency response corrections for eddy correlation systems , 1986 .

[51]  U. Högström,et al.  Von Kármán's Constant in Atmospheric Boundary Layer Flow: Reevaluated , 1985 .

[52]  F. Nieuwstadt The Turbulent Structure of the Stable, Nocturnal Boundary Layer , 1984 .

[53]  Leif Kristensen,et al.  The Effect of Line Averaging on Scalar Flux Measurements with a Sonic Anemometer near the Surface , 1984 .

[54]  H. Panofsky,et al.  Atmospheric Turbulence: Models and Methods for Engineering Applications , 1984 .

[55]  Frans T. M. Nieuwstadt,et al.  Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes , 1983 .

[56]  Bernard C. Kenney,et al.  Beware of spurious self‐correlations! , 1982 .

[57]  J. W. Telford A theoretical value for von Karman's constant , 1982 .

[58]  G. C. Gill Comments on “A Revaluation of the Kansas Mast Influence on Measurements of Stress and Cup Anemometer Overspeeding” , 1982 .

[59]  J. Businger,et al.  Comments on ‘a revaluation of the Kansas mast influence on measurements of stress and cup anemometer overspeeding’ , 1982 .

[60]  R. Hide An Introduction to Atmospheric Physics (2nd edn) , 1981 .

[61]  R. Francey,et al.  Interpretation of Flux-Profile Observations at ITCE (1976) , 1981 .

[62]  R. G. Fleagle,et al.  An Introduction to Atmospheric Physics , 1980 .

[63]  J. Wieringa,et al.  A revaluation of the Kansas mast influence on measurements of stress and cup anemometer overspeeding , 1980 .

[64]  John C. Wyngaard,et al.  Turbulence in the Evolving Stable Boundary Layer , 1979 .

[65]  J. Lacaze Comments on ‘the characteristics of turbulent velocity components in the surface layer under convective conditions’ , 1978 .

[66]  B. Hicks Comments on ‘the characteristics of turbulent velocity components in the surface layer under convective conditions’, by H. A. Panofsky, H. Tennekes, D. H. Lenschow, and J. C. Wyngaard , 1978 .

[67]  D. Lenschow,et al.  The characteristics of turbulent velocity components in the surface layer under convective conditions , 1977 .

[68]  A. Dyer A review of flux-profile relationships , 1974 .

[69]  G. C. Gill The helicoid anemometer: A long neglected but valuable anemometer , 1973 .

[70]  H. Tennekes,et al.  The Logarithmic Wind Profile , 1973 .

[71]  E. F. Bradley,et al.  Flux-Profile Relationships in the Atmospheric Surface Layer , 1971 .

[72]  C. Paulson The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer , 1970 .

[73]  H. Tennekes,et al.  Asymptotic Similarity in Neutral Barotropic Planetary Boundary Layers , 1968 .

[74]  D. A. Haugen,et al.  Deriving Power Spectra from a Three-Component Sonic Anemometer , 1968 .

[75]  H. Tennekes,et al.  Outline of a second-order theory of turbulent pipe flow. , 1968 .

[76]  T. W. Horst,et al.  J1.15 PARAMETERIZING THE TURBULENT SURFACE FLUXES OVER SUMMER SEA ICE , 2004 .

[77]  P. Monkewitz,et al.  IMPACT OF PRESSURE-GRADIENT CONDITIONS ON HIGH REYNOLDS NUMBER TURBULENT BOUNDARY LAYERS , 2004 .

[78]  Leslie M. Smith,et al.  Renormalization group analysis of turbulence , 2003 .

[79]  Arne V. Johansson,et al.  A note on the overlap region in turbulent boundary layers , 2000 .

[80]  P. Taylor,et al.  Some aspects of the interaction of blowing snow with the atmospheric boundary layer , 1996 .

[81]  V. Lykossov,et al.  On the friction velocity during blowing snow , 1995 .

[82]  P. Mason Atmospheric boundary layer flows: Their structure and measurement , 1995 .

[83]  J. Overland,et al.  Geostrophic drag coefficients for the central Arctic derived from Soviet drifting station data , 1994 .

[84]  A. Yaglom Similarity Laws for Wall Turbulent Flows: Their Limitations and Generalizations , 1993 .

[85]  J. Overland,et al.  Geostrophic drag coefficients over sea ice , 1992 .

[86]  Y. L. Hsu,et al.  Methods of measuring wind stress over a water surface — Discussions of displacement height and von Karman constant , 1992 .

[87]  Z. Sorbjan,et al.  Structure of the atmospheric boundary layer , 1989 .

[88]  S. P. S. Arya,et al.  Introduction to micrometeorology , 1988 .

[89]  Edgar L. Andreas,et al.  A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice , 1987 .

[90]  H. Tennekes,et al.  Similarity Relations, Scaling Laws and Spectral Dynamics , 1984 .

[91]  J. A. Businger,et al.  Equations and Concepts , 1984 .

[92]  J. Kondo,et al.  The Determination of the von Karman Constant , 1982 .

[93]  E. F. Bradley,et al.  An alternative analysis of flux-gradient relationships at the 1976 ITCE , 1982 .

[94]  J. Wyngaard,et al.  Cup, Propeller, Vane, and Sonic Anemometers in Turbulence Research , 1981 .

[95]  L. Lading,et al.  Cups, Vanes, Propellers, and Laser Anemometers , 1980 .

[96]  Some limitations of dimensional analysis and power laws , 1978 .

[97]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[98]  A. Monin,et al.  Statistical fluid mechanics; mechanics of turbulence , 1971 .

[99]  C. Coulson,et al.  Mathematics of Physics and Chemistry , 1957, Nature.

[100]  H. Schlichting Boundary Layer Theory , 1955 .

[101]  U. S. Army Simulations of Snow , Ice , and Near-Surface Atmospheric Processes on Ice Station Weddell , 2022 .