Who Will You "@"?

In Twitter-like social networking services, people can use the "@" symbol to mention other users in tweets and send them a message or link to their profiles. In recent years, social media services are rapidly growing with thousands of millions of users participating in them every day. When the "@" symbol is entered, there should be an automatic suggestion function which recommends a small list of candidates in order to help users to easily identify and input usernames. In this paper, we present our work on building a recommendation system for the mention function in microblogging services. The recommendation strategy we used takes into consideration not only content of the microblog but also histories of candidate users. To better handle these textual information, we propose a novel method that extends the translation-based model. Experimental results on the dataset we collected from a real world microblogging service demonstrate that the proposed method outperforms state-of-the-art approaches.

[1]  Wei Zhang,et al.  Combining latent factor model with location features for event-based group recommendation , 2013, KDD.

[2]  Ralf Krestel,et al.  Latent dirichlet allocation for tag recommendation , 2009, RecSys '09.

[3]  Shuchuan Lo,et al.  WMR--A Graph-Based Algorithm for Friend Recommendation , 2006, 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06).

[4]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[5]  Hermann Ney,et al.  A Systematic Comparison of Various Statistical Alignment Models , 2003, CL.

[6]  Pabitra Mitra,et al.  Feature weighting in content based recommendation system using social network analysis , 2008, WWW.

[7]  Zhiyuan Liu,et al.  Topical Word Trigger Model for Keyphrase Extraction , 2012, COLING.

[8]  Edward Y. Chang,et al.  Combinational collaborative filtering for personalized community recommendation , 2008, KDD.

[9]  Michael Moricz,et al.  PYMK: friend recommendation at myspace , 2010, SIGMOD Conference.

[10]  Michael R. Lyu,et al.  Learning to recommend with social trust ensemble , 2009, SIGIR.

[11]  Abhimanyu Das,et al.  Discovering Topical Aspects in Microblogs , 2014, COLING.

[12]  Mirella Lapata,et al.  Tweet Recommendation with Graph Co-Ranking , 2012, ACL.

[13]  Ido Guy,et al.  Recommending social media content to community owners , 2014, SIGIR.

[14]  Chun Chen,et al.  Whom to mention: expand the diffusion of tweets by @ recommendation on micro-blogging systems , 2013, WWW '13.

[15]  Mao Ye,et al.  Location recommendation for location-based social networks , 2010, GIS '10.

[16]  Yong Yu,et al.  Collaborative personalized tweet recommendation , 2012, SIGIR '12.

[17]  Francesco Ricci,et al.  Contextual music information retrieval and recommendation: State of the art and challenges , 2012, Comput. Sci. Rev..

[18]  Yong Yu,et al.  Diffusion-aware personalized social update recommendation , 2013, RecSys.

[19]  Ramesh Nallapati,et al.  Link-PLSA-LDA: A New Unsupervised Model for Topics and Influence of Blogs , 2021, ICWSM.

[20]  Licia Capra,et al.  Temporal diversity in recommender systems , 2010, SIGIR.

[21]  Yehuda Koren,et al.  Care to comment?: recommendations for commenting on news stories , 2012, WWW.

[22]  Yang Song,et al.  Real-time automatic tag recommendation , 2008, SIGIR '08.

[23]  Mihai Datcu,et al.  Semantic Annotation of Satellite Images Using Latent Dirichlet Allocation , 2010, IEEE Geoscience and Remote Sensing Letters.

[24]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Indexing , 1999, SIGIR Forum.

[25]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Ioannis Konstas,et al.  On social networks and collaborative recommendation , 2009, SIGIR.

[27]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[28]  Hongfei Yan,et al.  Recommending citations with translation model , 2011, CIKM '11.

[29]  Hagai Attias,et al.  Topic regression multi-modal Latent Dirichlet Allocation for image annotation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  David M. Blei,et al.  Supervised Topic Models , 2007, NIPS.

[31]  David Carmel,et al.  Social media recommendation based on people and tags , 2010, SIGIR.

[32]  Lars Schmidt-Thieme,et al.  Learning optimal ranking with tensor factorization for tag recommendation , 2009, KDD.

[33]  Jia Wang,et al.  User comments for news recommendation in forum-based social media , 2010, Inf. Sci..

[34]  Markus Schedl,et al.  Hybrid retrieval approaches to geospatial music recommendation , 2013, SIGIR.

[35]  Hassan Foroosh,et al.  Exploiting Topical Perceptions over Multi-Lingual Text for Hashtag Suggestion on Twitter , 2013, FLAIRS Conference.

[36]  Jane Yung-jen Hsu,et al.  A Content-Based Method to Enhance Tag Recommendation , 2009, IJCAI.

[37]  Marco Pennacchiotti,et al.  Investigating topic models for social media user recommendation , 2011, WWW.

[38]  Eugene Agichtein,et al.  TM-LDA: efficient online modeling of latent topic transitions in social media , 2012, KDD.

[39]  Wenyi Huang,et al.  Recommending citations: translating papers into references , 2012, CIKM.

[40]  Chun Chen,et al.  Music recommendation by unified hypergraph: combining social media information and music content , 2010, ACM Multimedia.

[41]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[42]  Hector Garcia-Molina,et al.  Social tag prediction , 2008, SIGIR '08.

[43]  Xuanjing Huang,et al.  Time-aware Personalized Hashtag Recommendation on Social Media , 2014, COLING.

[44]  Xuanjing Huang,et al.  Learning Topical Translation Model for Microblog Hashtag Suggestion , 2013, IJCAI.

[45]  Adam Rae,et al.  Improving tag recommendation using social networks , 2010, RIAO.

[46]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.