Construction and Performance of the ATLAS SCT Barrels and Cosmic Tests

ATLAS is a multi-purpose detector for the LHC and will detect proton-proton collisions with center of mass energy of 14 TeV. Part of the central inner detector, the Semi-Conductor Tracker (SCT) barrels, were assembled and tested at Oxford University and later integrated at CERN with the TRT (Transition Radiation Tracker) barrel. The barrel SCT is composed of 4 layers of silicon strip modules with two sensor layers with 80 micro m channel width. The design of the modules and the barrels has been optimized for low radiation length while maintaining mechanical stability, bringing services to the detector, and ensuring a cold and dry environment. The high granularity, high detector efficiency and low noise occupancy (< 5*10^-4) of the SCT will enable ATLAS to have an efficient pattern recognition capability. Due to the binary nature of the SCT read-out, a stable read-out system and the calibration system is of critical importance. SctRodDaq is the online software framework for the calibration and also the physics running of the SCT and has been developed and tested during construction and commissioning of the detector with cosmics. It reliably measures the SCT performance parameters for each of the 6.3*10^6 channels in the SCT, identifies defects and problematic modules and writes them to an offline database for access from Athena, the ATLAS offline software framework. This dataflow chain has been exercised during the cosmics run at CERN, where a 5*10^5 cosmics sample for the combined SCT and TRT detectors was collected with a scintillator based trigger. It is now being commissioned in the ATLAS pit.

[1]  Piotr Malecki,et al.  Multiprocessor system controlling power supply distribution for the ATLAS SCT , 2004 .

[2]  A. Barr Studies of supersymmetry models for the ATLAS experiment at the Large Hadron Collider , 2002 .

[3]  H. Spieler The silicon microstrip sensors of the ATLAS semiconductor tracker , 2007 .

[4]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[5]  Bjarne Stugu,et al.  Silicon microstrip detectors for the ATLAS SCT , 2002 .

[6]  M. Dentan,et al.  DMILL (Durci Mixte sur Isolant Logico-Linéaire) A mixed analog-digital radiation hard technology for high energy physics electronics , 1993 .

[7]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[8]  H. Pernegger Recent test results on the ATLAS SCT detector , 2003 .

[9]  A. Andreazza Test beam performance of the ATLAS Pixel Detector modules , 2006 .

[10]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[11]  Helmuth Spieler,et al.  Semiconductor Detector Systems , 2005 .

[12]  M. D'Onofrio,et al.  A study of the tracking performance of irradiated SCT prototypes using test beam data , 2022 .

[13]  H. Sandaker SCT and TRT Performance from Cosmic Ray Runs , 2007 .

[14]  Shaun Roe,et al.  Electrical test results from ATLAS-SCT end-cap modules , 2003 .

[15]  S. Teradaa,et al.  Design and development of a work robot to place ATLAS SCT modules onto barrel cylinders , 1994 .

[16]  B. Dolgoshein Transition radiation detectors , 1993 .

[17]  P. Dervan The results of the irradiations of microstrip detectors for the ATLAS tracker (SCT) , 2003 .

[18]  Position resolution and particle identification with the ATLAS EM calorimeter , 2005, physics/0505127.

[19]  M Postranecky,et al.  TTC Interface Module for ATLAS Read-Out Electronics : Final production version based on Xilinx FPGA devices , 2004 .

[20]  H. Pernegger,et al.  Integration and test of the ATLAS Semiconductor Tracker , 2007 .

[21]  Veljko Radeka,et al.  LOW-NOISE TECHNIQUES IN DETECTORS , 1988 .

[22]  S. Peeters The ATLAS semiconductor tracker endcap , 2003 .

[23]  T. Akimoto,et al.  Beamtest of non-irradiated and irradiated ATLAS SCT microstrip modules at KEK , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[24]  H. Braun,et al.  Performance of the ATLAS hadronic end-cap calorimeter in beam tests , 2002 .

[25]  H. G. Wilkens,et al.  Construction, assembly and tests of the ATLAS electromagnetic barrel calorimeter , 2006 .

[26]  Martin John White,et al.  Searching for Supersymmetry with the ATLAS detector , 2006 .

[27]  Alessandra Ciocio Diagnostic Analysis of Silicon Strips Detector Readout in the ATLAS Semi-Conductor Tracker , 2004 .

[28]  Gilles Mahout,et al.  Radiation hardness studies of the front-end ASICs for the optical links of the ATLAS SemiConductor Tracker , 2001 .

[29]  D. Barberis ATLAS Inner Detector developments , 2000 .

[30]  D. S. Su,et al.  The off-detector opto-electronics for the optical links of the ATLAS Semiconductor Tracker and Pixel detector , 2004 .

[31]  B. Girolamo The ATLAS Tilecal hadronic calorimeter , 2000 .

[32]  Bjarne Stugu,et al.  ARTICLE IN PRESS Nuclear Instruments and Methods in Physics Research A 568 (2006) 642–671 , 2022 .

[33]  T. Akessona,et al.  Operation of the ATLAS Transition Radiation Tracker under very high irradiation at the CERN LHC , 2004 .

[34]  V. Fadeyev,et al.  ASIC wafer test system for the ATLAS Semiconductor Tracker front-end chip , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[35]  Optical readout in a multi-module system test for the ATLAS pixel detector , 2005, physics/0510250.

[36]  S. Kolos,et al.  Use of CORBA in the ATLAS prototype DAQ , 1998 .

[37]  J. Pinfold Plans for the Very Forward Region of Atlas - the Lucid Luminosity Monitor , 2006 .

[38]  T. J. Fraser,et al.  The ATLAS SCT Optoelectronics and the Associated Electrical Services , 2006 .

[39]  Wladyslaw Dabrowski Readout of silicon strip detectors , 2003 .

[40]  Helmuth Spieler,et al.  Beam tests of ATLAS SCT silicon strip detector modules , 2005 .

[41]  W. J. Murray,et al.  Resonant bond wire vibrations in the ATLAS semiconductor tracker , 2005 .

[42]  C. Lacasta,et al.  The developement of the CAFE-P/CAFE-M bipolar chips for the ATLAS semiconductor tracker , 1999 .

[43]  T. Akessona,et al.  ATLAS Transition Radiation Tracker test-beam results , 2004 .

[44]  Rwl Jones,et al.  The OKS persistent in-memory object manager , 1998 .

[45]  T. Åkesson,et al.  Tracking performance of the transition radiation tracker prototype for the ATLAS experiment , 2002 .

[46]  C. Damerell Vertex detectors: The State of the art and future prospects , 1995 .

[47]  W. Leo,et al.  Techniques for Nuclear and Particle Physics Experiments , 1987 .

[48]  Helmuth Spieler,et al.  The development of a rad-hard CMOS chip for the binary readout of the ATLAS semiconductor tracker , 1999 .

[49]  P. Ferrari The ATLAS Semiconductor Tracker system test results , 2004 .

[50]  R. Van Berg,et al.  Status of design and construction of the Transition Radiation Tracker (TRT) for the ATLAS experiment at the LHC , 2004 .

[51]  Bjarne Stugu,et al.  The ATLAS semiconductor tracker end-cap module , 2007 .

[52]  Helmuth Spieler,et al.  Design and performance of the ABCD3TA ASIC for readout of silicon strip detectors in the ATLAS semiconductor tracker , 2005 .

[53]  I. Gregor,et al.  Radiation hardness and lifetime studies of the VCSELs for the ATLAS SemiConductor Tracker , 2003 .

[54]  G. Lutz,et al.  Radiation studies of silicon-microstrip detectors for use in ATLAS and SCT , 2002 .

[55]  G. Mornacchi,et al.  The raw event format in the ATLAS Trigger & DAQ , 1998 .

[56]  Gilles Mahout,et al.  Single event upset studies with the optical links of the ATLAS semiconductor tracker , 2002 .

[57]  J Butterworth,et al.  TIM (TTC interface module) for ATLAS SCT & PIXEL Read Out electronics , 2001 .

[58]  Kazuhiko Hara,et al.  Development of the hybrid structure for the barrel module of the ATLAS silicon microstrip tracker , 2001 .