Vortex glass and vortex liquid in oscillatory media.

We study the disordered, multispiral solutions of two-dimensional oscillatory media for parameter values at which the single-spiral/vortex solution is fully stable. Using the complex Ginzburg-Landau (CGLE) equation, we show that these states, heretofore believed to be static, actually evolve extremely slowly. This is achieved via a reduction of the CGLE to the evolution of the sole vortex coordinates. This true defect-mediated turbulence occurs in two distinct phases, a vortex liquid characterized by normal diffusion of spirals, and a slowly relaxing, intermittent, "vortex glass."

[1]  Edward Ott,et al.  The structure of spiral domain patterns , 1996 .

[2]  I. Aranson,et al.  GINZBURG-LANDAU THEORY OF SPIRAL SURFACE GROWTH , 1998 .

[3]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[4]  J. Beery,et al.  Growth Mechanism of Sputtered Films of YBa2Cu3O7 Studied by Scanning Tunneling Microscopy , 1991, Science.

[5]  F. Guerra Spin Glasses , 2005, cond-mat/0507581.

[6]  Huber,et al.  Nucleation and transients at the onset of vortex turbulence. , 1992, Physical review letters.

[7]  Paul Manneville,et al.  Phase Diagram of the Two-Dimensional Complex Ginzburg-Landau Equation , 2016, 1608.07519.

[8]  Q. Ouyang,et al.  Transition from spirals to defect turbulence driven by a convective instability , 1996, Nature.

[9]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[10]  A. Goldbeter,et al.  Biochemical Oscillations And Cellular Rhythms: Contents , 1996 .

[11]  I. Aranson,et al.  Spiral Motion in a Noisy Complex Ginzburg-Landau Equation , 1997, patt-sol/9709005.

[12]  Mobility of spiral waves. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[13]  Weber,et al.  Theory of interaction and bound states of spiral waves in oscillatory media. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  L. Gil,et al.  Defect-mediated turbulence. , 1989 .

[15]  Patrick S. Hagan,et al.  Spiral Waves in Reaction-Diffusion Equations , 1982 .

[16]  A. Winfree When time breaks down , 1987 .

[17]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[18]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.

[19]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[20]  B. M. Fulk MATH , 1992 .

[21]  Javier Burguete,et al.  BEKKI-NOZAKI AMPLITUDE HOLES IN HYDROTHERMAL NONLINEAR WAVES , 1999, patt-sol/9904005.