The Primordial Abundance of 4He Revisited

We use a sample of 45 low-metallicity H II regions to determine the primordial helium abundance Yp with a precision of better than 1%. The data includes new spectrophotometric observations of 15 blue compact galaxies (BCGs) with oxygen abundance 12 + log (O/H) between 7.83 and 8.35 (Z☉/13 ≤ Z ≤ Z☉/4), most of which were selected from the First Byurakan and the University of Michigan objective prism surveys. We have included many low-metallicity BCGs in our sample, including the two most metal-deficient galaxies known, I Zw 18 (Z☉/55) and SBS 0335-052 (Z☉/43). We have carefully investigated the physical effects that may make the He I line intensities deviate from their recombination values, such as collisional and fluorescent enhancements, underlying He I stellar absorption, and absorption by Galactic interstellar Na I. By extrapolating the Y versus O/H and Y versus N/H linear regressions to O/H = N/H = 0, we obtain Yp = 0.244 ± 0.002 and 0.245 ± 0.001, respectively, in agreement with the study of Izotov, Thuan, & Lipovetsky, but higher than previous determinations (Yp = 0.230-0.234). Part of the difference comes from the fact that previous investigators have used the northwest component of I Zw 18 in the determination of Yp. This component is subject to strong underlying He I stellar absorption that reduces the He I line intensities by 5%-25%. The derived Y is 0.233 ± 0.008 from the He I λ6678 line. Instead, by using the southeast component of I Zw 18, which is much less subject to underlying He I stellar absorption, we obtain Y = 0.242 ± 0.009. The mean Y of the two most metal-deficient BCGs, I Zw 18 and SBS 0335-052, is =0.245±0.004, in excellent agreement with the Yp derived from the linear regressions. We derive a slope dY/dZ = 2.3 ± 1.0, considerably smaller than those derived before. With this smaller slope and taking into account the errors, chemical evolution models with an outflow of well-mixed material can be built for star-forming dwarf galaxies that satisfy all the observational constraints. Our Yp gives Ωb h250=0.058±0.007, consistent with the lower limit set by dynamical measurements and X-ray observations of clusters of galaxies. It is also consistent, within the framework of standard big bang nucleosynthesis theory, with measurements of primordial 7Li in galactic halo stars, and at the 1 σ level with the D/H abundance measured in absorption systems toward quasars by Tytler & Burles.

[1]  T. Thuan,et al.  Reexamining the Helium Abundance of I Zw 18 , 1998 .

[2]  E. Pérez Temperature fluctuations and starburst evolution , 1997 .

[3]  S. Tayal Collision Strengths for Electron Collisional Excitation of S II , 1997 .

[4]  R. Gruenwald,et al.  Temperature Fluctuations and Abundances in H II Galaxies , 1997, astro-ph/9704167.

[5]  Frederic H. Chaffee,et al.  SBS 0335–052, A Probable Nearby Young Dwarf Galaxy: Evidence Pro and Con , 1997 .

[6]  K. Olive,et al.  The Primordial Abundance of 4He: An Update , 1996, astro-ph/9611166.

[7]  L. Cowie,et al.  A high deuterium abundance in the early Universe , 1996, Nature.

[8]  P. Bonifacio,et al.  The primordial lithium abundance , 1996, astro-ph/9611043.

[9]  E. Skillman,et al.  Elemental Abundance Variations and Chemical Enrichment from Massive Stars in Starbursts. II. NGC 1569 , 1996, astro-ph/9706235.

[10]  V. Lipovetsky,et al.  Hubble Space Telescope Observations of the Blue Compact Dwarf SBS 0335–052: A Probable Young Galaxy , 1996, astro-ph/9607121.

[11]  V. Lipovetsky,et al.  Hubble Space Telescope Observations of the Unusual Blue Compact Dwarf Galaxy Markarian 996 , 1996 .

[12]  R. Terlevich,et al.  A spectroscopic search for red supergiants in the M33 giant H ii region NGC 604 , 1996 .

[13]  C. Hogan,et al.  High Deuterium Abundance in a New Quasar Absorber , 1996, astro-ph/9603084.

[14]  S. Burles,et al.  Cosmological baryon density derived from the deuterium abundance at redshift z = 3.57 , 1996, Nature.

[15]  S. Sarkar Big bang nucleosynthesis and physics beyond the standard model , 1996, hep-ph/9602260.

[16]  J. Baldwin,et al.  The high-redshift deuterium abundance: The z = 3.086 absorption complex towards Q 0420 - 388 , 1996 .

[17]  C. Hogan,et al.  Confirmation of High Deuterium Abundance in Quasar Absorbers , 1995, astro-ph/9512004.

[18]  D. Hunter,et al.  The Massive Stars of I ZW 18 as Seen in Hubble Space Telescope Images , 1995 .

[19]  M. Barlow,et al.  Balmer Discontinuity Temperatures in the Orion Nebula , 1995 .

[20]  G. Ferland,et al.  Temperature Fluctuations in Photoionized Nebulae , 1995 .

[21]  R. Shaw,et al.  SOFTWARE FOR THE ANALYSIS OF EMISSION LINE NEBULAE , 1995 .

[22]  V. Lipovetsky,et al.  Heavy element abundances in a new sample of low-metallicity blue compact galaxies , 1995 .

[23]  G. Ferland,et al.  Collisional Effects in He I: An Observational Analysis , 1995 .

[24]  A. Fabian,et al.  Einstein Observatory evidence for the widespread baryon overdensity in clusters of galaxies , 1995, astro-ph/9502092.

[25]  D. Thomas,et al.  Predicting Big Bang Deuterium , 1994, astro-ph/9412087.

[26]  John V. Vallerga,et al.  The Local Distribution of NA i Interstellar Gas , 1994 .

[27]  R. Terlevich,et al.  Violent star formation in NGC 2363 , 1994 .

[28]  M. Peimbert,et al.  Chemical Evolution of Irregular and Blue Compact Galaxies , 1994, astro-ph/9411108.

[29]  V. Lipovetsky,et al.  The Primordial helium abundance from a new sample of metal-deficient blue compact galaxies , 1994 .

[30]  F. Matteucci,et al.  Element abundances in blue compact galaxies , 1994 .

[31]  E. Terlevich,et al.  Spatially resolved optical and near-infrared spectroscopy of the low-metallicity galaxy UGC 4483 , 1994 .

[32]  R. Carswell,et al.  Is there deuterium in the $z = 3.32$ Complex in the Spectrum of $0014 + 813$? , 1994 .

[33]  C. Hogan,et al.  Deuterium abundance and background radiation temperature in high-redshift primordial clouds , 1994, Nature.

[34]  K A Berrington,et al.  Collision Strengths from a 29-State R-Matrix Calculation on Electron Excitation in Helium , 1993 .

[35]  Anil K. Pradhan,et al.  Excitation rate coefficients and line ratios for the optical and ultraviolet transitions in S II , 1993 .

[36]  R. Kennicutt,et al.  Spatially resolved optical and near infrared spectroscopy of I Zw 18 , 1993 .

[37]  W. Vacca,et al.  Optical spectrophotometry of Wolf-Rayet galaxies , 1992 .

[38]  D. Garnett Electron temperature variations and the measurement of nebular abundances , 1992 .

[39]  R. Terlevich,et al.  The Primordial helium abundance from observations of extragalactic H-II regions , 1992 .

[40]  T. Wilson,et al.  Abundances in the interstellar medium , 1992 .

[41]  N. Craig,et al.  Further high-resolution Na I observations of the local interstellar medium , 1991 .

[42]  J. Vallerga,et al.  High-resolution sodium absorption-line observations of the local interstellar medium , 1990 .

[43]  J. B. Oke Faint Spectrophotometric Standard Stars , 1990 .

[44]  M. Peimbert,et al.  Physical Conditions of H II Regions in M101 and the Pregalactic Helium Abundance , 1989 .

[45]  S. Friedman,et al.  High-resolution spectroscopy and direct imaging of the dwarf galaxy I Zw 18 , 1989 .

[46]  B. Pagel,et al.  On the determination of temperatures of ionizing stars in H II regions , 1988 .

[47]  J. Mazzarella,et al.  A Catalog of Markarian Galaxies , 1986 .

[48]  H. Dinerstein,et al.  Reassessing the primordial helium abundance - new observations of NGC 4861 and CG 1116 + 51 , 1986 .

[49]  R. Terlevich,et al.  NEW MEASUREMENTS OF HELIUM IN H II GALAXIES. , 1986 .

[50]  T. Boroson,et al.  OBSERVATIONS OF A COMPLETE SAMPLE OF EMISSION-LINE GALAXIES , 1986 .

[51]  W. Sargent,et al.  Spectrophotometry of 12 metal-poor galaxies : implications for the primordial helium abundance. , 1983 .

[52]  M. Peimbert,et al.  Gradients in the physical conditions of M101 and the pregalactic helium abundance , 1982 .

[53]  H. French Galaxies with the spectra of giant H II regions , 1980 .

[54]  M. Peimbert,et al.  Chemical composition of H ii regions in the Small Magellanic Cloud and the pregalactic helium abundance , 1976 .

[55]  M. Peimbert,et al.  Chemical composition of H II regions in the Large Magellanic Cloud and its cosmological implications , 1974 .

[56]  M. Brocklehurst The Line Spectra of Helium in Gaseous Nebulae , 1972 .

[57]  M. Brocklehurst,et al.  Calculations of Level Populations for the Low Levels of Hydrogenic Ions in Gaseous Nebulae , 1971 .

[58]  A. Whitford The law of interstellar reddening. , 1958 .

[59]  V. Lipovetsky,et al.  The Primordial Helium Abundance: Systematic Effects and a New Determination , 1997 .

[60]  H. Reeves On the origin of the light elements (Z<6) , 1994 .

[61]  J. Masegosa,et al.  ELEMENT ABUNDANCES IN H II GALAXIES , 1994 .

[62]  S. Neizvestny,et al.  Spectrophotometry of 83 possible blue compact dwarf galaxies from the second byurakan survey , 1993 .

[63]  J. A. Stepanian,et al.  Unusually low heavy-element abundance found in the blue compact dwarf galaxy SBS0335–052 , 1990, Nature.

[64]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[65]  Lawrence H. Aller,et al.  Physics of thermal gaseous nebulae , 1984 .

[66]  R. Robbins THE HELIUM TRIPLET SPECTRUM IN EXPANDING NEBULAE. II. SELF-ABSORPTION. , 1968 .