High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics

We present a class of hybridizable discontinuous Galerkin (HDG) methods for the numerical simulation of wave phenomena in acoustics and elastodynamics. The methods are fully implicit and high-order accurate in both space and time, yet computationally attractive owing to their following distinctive features. First, they reduce the globally coupled unknowns to the approximate trace of the velocity, which is defined on the element faces and single-valued, thereby leading to a significant saving in the computational cost. In addition, all the approximate variables (including the approximate velocity and gradient) converge with the optimal order of k+1 in the L^2-norm, when polynomials of degree k>=0 are used to represent the numerical solution and when the time-stepping method is accurate with order k+1. When the time-stepping method is of order k+2, superconvergence properties allows us, by means of local postprocessing, to obtain better, yet inexpensive approximations of the displacement and velocity at any time levels for which an enhanced accuracy is required. In particular, the new approximations converge with order k+2 in the L^2-norm when k>=1 for both acoustics and elastodynamics. Extensive numerical results are provided to illustrate these distinctive features.

[1]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .

[2]  Per-Olof Persson,et al.  The Compact Discontinuous Galerkin (CDG) Method for Elliptic Problems , 2007, SIAM J. Sci. Comput..

[3]  Ilio Galligani,et al.  Mathematical Aspects of Finite Element Methods , 1977 .

[4]  Bernardo Cockburn,et al.  A hybridizable discontinuous Galerkin method for linear elasticity , 2009 .

[5]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions , 2009, SIAM J. Numer. Anal..

[6]  Patrick Joly,et al.  An Analysis of New Mixed Finite Elements for the Approximation of Wave Propagation Problems , 2000, SIAM J. Numer. Anal..

[7]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[8]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..

[9]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[10]  P. Joly,et al.  On the stability analysis of boundary conditions for the wave equation by energy methods. Part I: the homogeneous case , 1994 .

[11]  Haiying Wang,et al.  Superconvergent discontinuous Galerkin methods for second-order elliptic problems , 2009, Math. Comput..

[12]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..

[13]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[14]  Bernardo Cockburn,et al.  journal homepage: www.elsevier.com/locate/cma , 2022 .

[15]  Francisco-Javier Sayas,et al.  A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS , 2010 .

[16]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[17]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[18]  Bo Dong,et al.  A Hybridizable Discontinuous Galerkin Method for Steady-State Convection-Diffusion-Reaction Problems , 2009, SIAM J. Sci. Comput..

[19]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[20]  Francisco-Javier Sayas,et al.  Analysis of HDG methods for Stokes flow , 2011, Math. Comput..

[21]  Bernardo Cockburn,et al.  The Derivation of Hybridizable Discontinuous Galerkin Methods for Stokes Flow , 2009, SIAM J. Numer. Anal..

[22]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for Wave Propagation , 2006, SIAM J. Numer. Anal..

[23]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[24]  Bernardo Cockburn,et al.  A Comparison of HDG Methods for Stokes Flow , 2010, J. Sci. Comput..

[25]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[26]  T. Geveci On the application of mixed finite element methods to the wave equations , 1988 .

[27]  Per-Olof Persson,et al.  Newton-GMRES Preconditioning for Discontinuous Galerkin Discretizations of the Navier--Stokes Equations , 2008, SIAM J. Sci. Comput..

[28]  A. Sayfy,et al.  Semiexplicit A -Stable Runge-Kutta Methods , 1979 .

[29]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..

[30]  Bo Dong,et al.  A Hybridizable and Superconvergent Discontinuous Galerkin Method for Biharmonic Problems , 2009, J. Sci. Comput..

[31]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[32]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[33]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[34]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[35]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[36]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[37]  Marcus J. Grote,et al.  Discontinuous Galerkin Finite Element Method for the Wave Equation , 2006, SIAM J. Numer. Anal..