Pattern recognition for partial discharge in GIS based on pulse coupled neural networks and wavelet packet decomposition

Based on the characteristics of partial discharge (PD) defects in gas insulated switchgear (GIS), four typical single defects were designed for the present paper. PD three-dimensional (3D) patterns were constructed based on the ultra high frequency detection systems. The pulse-coupled neural networks (PCNN) and wavelet packet decomposition (WPD) method were used in PD feature extraction. The recognition results show that the proposed method used in PD feature extraction can effectively improve the accuracy of pattern recognition rate. Streszczenie. Przeanalizowano defekty wylącznika gazowego z wyladowaniem niezupelnym. Defekty te przedstawiane są jako obrazy 3D. Do ekstrakcji cech tych obrazow wykorzystuje sie transformate falkową i impulsowo sprzezone sieci neuronowe. (Rozpoznawanie cech wyladowania niezupelnego w wylącznikach gazowych z wykorzystaniem impulsowo sprzezonych sieci neuronowych i transformaty falkowej)

[1]  Raul Cristian Muresan,et al.  Pattern recognition using pulse-coupled neural networks and discrete Fourier transforms , 2003, Neurocomputing.

[2]  J. L. Johnson Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images. , 1994, Applied optics.

[3]  J. Karvonen A simplified pulse-coupled neural network based sea-ice classifier with graphical interactive training , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[4]  Iraida KOLCUNOVÁ Using electro magnetic PD sensors for diagnostics of high voltage equipment , 2003 .

[5]  Ming Tang,et al.  Study on mathematical model for VHF partial discharge of typical insulated defects in GIS , 2007, IEEE Transactions on Dielectrics and Electrical Insulation.

[6]  Clark S. Lindsey,et al.  Hybrid neural networks for automatic target recognition , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[7]  H.C.S. Rughooputh,et al.  Pulse coded neural network for sign recognition for navigation , 2003, IEEE International Conference on Industrial Technology, 2003.

[8]  Christelle Godin,et al.  Pattern recognition with spiking neurons: performance enhancement based on a statistical analysis , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[9]  C.S. Chang,et al.  Source classification of partial discharge for gas insulated substation using waveshape pattern recognition , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[10]  Martin Kermit,et al.  Feature extraction from photographic images using a hybrid neural network , 1999, Other Conferences.