Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams.

The internal energy flow in a light beam can be divided into the "orbital" and "spin" parts, associated with the spatial and polarization degrees of freedom of light. In contrast to the orbital one, experimental observation of the spin flow seems problematic because it is converted into an orbital flow upon tight focusing of the beam, usually applied for energy flow detection by means of the mechanical action upon probe particles. We propose a two-beam interference technique that results in an appreciable level of spin flow in moderately focused beams and detection of the orbital motion of probe particles within a field where the transverse energy circulation is associated exclusively with the spin flow. This result can be treated as the first demonstration of mechanical action of the spin flow of a light field.

[1]  Onur Hosten,et al.  Observation of the Spin Hall Effect of Light via Weak Measurements , 2008, Science.

[2]  A. Bekshaev,et al.  Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons. , 2006, Optics letters.

[3]  K. Bliokh,et al.  Internal flows and energy circulation in light beams , 2010, 1011.0862.

[4]  Aleksandr Bekshaev,et al.  Transverse energy flows in vectorial fields of paraxial light beams , 2007, International Conference on Coherent and Nonlinear Optics.

[5]  Aleksandr Bekshaev Spin angular momentum of inhomogeneous and transversely limited light beams , 2006, International Conference on Correlation Optics.

[6]  Aleksandr Bekshaev,et al.  Vortex Flow of Light: “Spin” and “Orbital” Flows in a Circularly Polarized Paraxial Beam , 2011 .

[7]  A. Bekshaev Role of Azimuthal Energy Flows in the Geometric Spin Hall Effect of Light , 2011, 1106.0982.

[8]  O V Angelsky,et al.  Experimental revealing of polarization waves , 1998, Other Conferences.

[9]  Norman R. Heckenberg,et al.  Angular momentum of a strongly focused Gaussian beam , 2008 .

[10]  Igor I. Mokhun,et al.  Introduction to Linear Singular Optics , 2007 .

[11]  M. Vasnetsov,et al.  Wavefront motion in the vicinity of a phase dislocation: “optical vortex” , 2000 .

[12]  Ming Lei,et al.  Comment on "optical orbital angular momentum from the curl of polarization". , 2011, Physical review letters.

[13]  O V Angelsky,et al.  Investigation of optical currents in coherent and partially coherent vector fields. , 2011, Optics express.

[14]  Marat S. Soskin,et al.  Transverse energy flows in vectorial fields of paraxial beams with singularities , 2007 .

[15]  K. Bliokh,et al.  Angular Momenta and Spin-Orbit Interaction of Nonparaxial Light in Free Space , 2010, 1006.3876.

[16]  Kishan Dholakia,et al.  Optical manipulation of nanoparticles: a review , 2008 .

[17]  Miles J. Padgett,et al.  The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density , 2000 .

[18]  M. Vasnetsov,et al.  Transversal optical vortex , 2001 .

[19]  I. Mokhun,et al.  Singularities of the Poynting vector and the structure of optical field , 2006, International Conference on Correlation Optics.

[20]  Aleksandr Bekshaev,et al.  Mechanical Action of Inhomogeneously Polarized Optical Fields and Detection of the Internal Energy Flows , 2011 .

[21]  K. Bliokh,et al.  Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. , 2006, Physical review letters.

[22]  A. Gerrard,et al.  Introduction to Matrix Methods in Optics , 1975 .

[23]  S. B. Yermolenko,et al.  Polarization manifestations of correlation (intrinsic coherence) of optical fields. , 2008, Applied optics.

[24]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[25]  Jing Chen,et al.  Optical orbital angular momentum from the curl of polarization. , 2010, Physical review letters.

[26]  Gerd Leuchs,et al.  Transverse angular momentum and geometric spin Hall effect of light. , 2009, Physical review letters.

[27]  M J Padgett,et al.  Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. , 2002, Physical review letters.

[28]  A. Ya. Bekshaev,et al.  Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum , 2009 .

[29]  David McGloin,et al.  Spin-to-orbital angular momentum conversion in a strongly focused optical beam. , 2007, Physical review letters.

[30]  Phase and transport velocities in particle and electromagnetic beams , 2002, physics/0305064.

[31]  J. Lekner Polarization of tightly focused laser beams , 2003, physics/0305065.

[32]  Miles J. Padgett,et al.  The Poynting vector in Laguerre-Gaussian laser modes , 1995 .

[33]  I. Mokhun,et al.  Potentiality of experimental analysis for characteristics of the Poynting vector components , 2008 .

[34]  A. Ashkin,et al.  Optical trapping and manipulation of neutral particles using lasers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries , 2006 .

[36]  D. Lenstra,et al.  Optical vortices near sub-wavelength structures , 2004 .

[37]  Kishan Dholakia,et al.  The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization , 2004 .

[38]  Oleg V. Angelsky,et al.  Experimental revealing of polarization waves. , 1999 .