A Two-Stage Algorithm for Joint Multimodal Image Reconstruction

We propose a new two-stage joint image reconstruction method by recovering edges directly from observed data and then assembling an image using the recovered edges. More specifically, we reformulat...

[1]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[2]  Kristian Bredies,et al.  Joint MR-PET Reconstruction Using a Multi-Channel Image Regularizer , 2017, IEEE Transactions on Medical Imaging.

[3]  Junzhou Huang,et al.  Fast multi-contrast MRI reconstruction. , 2014, Magnetic resonance imaging.

[4]  David Atkinson,et al.  Joint reconstruction of PET-MRI by parallel level sets , 2014, 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).

[5]  Kristian Bredies,et al.  A TGV-Based Framework for Variational Image Decompression, Zooming, and Reconstruction. Part I: Analytics , 2015, SIAM J. Imaging Sci..

[6]  David Atkinson,et al.  Joint reconstruction of PET-MRI by exploiting structural similarity , 2014, Inverse Problems.

[7]  J. Miller Numerical Analysis , 1966, Nature.

[8]  Rama Chellappa,et al.  Gradient-Based Image Recovery Methods From Incomplete Fourier Measurements , 2012, IEEE Transactions on Image Processing.

[9]  Alan C. Evans,et al.  BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .

[10]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[11]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[12]  Michael Möller,et al.  Color Bregman TV , 2013, SIAM J. Imaging Sci..

[13]  Kristian Bredies,et al.  Recovering Piecewise Smooth Multichannel Images by Minimization of Convex Functionals with Total Generalized Variation Penalty , 2011, Efficient Algorithms for Global Optimization Methods in Computer Vision.

[14]  T. Pock,et al.  Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.

[15]  Xavier Bresson,et al.  Adaptive Regularization With the Structure Tensor , 2015, IEEE Transactions on Image Processing.

[16]  Daniel Cremers,et al.  An approach to vectorial total variation based on geometric measure theory , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  A. Majumdar,et al.  Joint reconstruction of multiecho MR images using correlated sparsity. , 2011, Magnetic resonance imaging.

[18]  Simon R. Arridge,et al.  Vector-Valued Image Processing by Parallel Level Sets , 2014, IEEE Transactions on Image Processing.

[19]  T. Chan,et al.  Fast dual minimization of the vectorial total variation norm and applications to color image processing , 2008 .

[20]  Michael Möller,et al.  Collaborative Total Variation: A General Framework for Vectorial TV Models , 2015, SIAM J. Imaging Sci..

[21]  Yunmei Chen,et al.  Projection Onto A Simplex , 2011, 1101.6081.

[22]  Johannes Berger,et al.  Solution-Driven Adaptive Total Variation Regularization , 2015, SSVM.

[23]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[24]  Alfred M. Bruckstein,et al.  Orientation-Matching Minimization for Image Denoising and Inpainting , 2011, International Journal of Computer Vision.

[25]  Y. Nesterov A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) , 1983 .

[26]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[27]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[28]  Alireza Entezari,et al.  Gradient-based sparse approximation for computed tomography , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[29]  Hairong Zheng,et al.  Joint Reconstruction of Multi-contrast Images and Multi-channel Coil Sensitivities , 2017 .

[30]  Marta M. Betcke,et al.  Multicontrast MRI Reconstruction with Structure-Guided Total Variation , 2015, SIAM J. Imaging Sci..

[31]  Vivek K Goyal,et al.  Multi‐contrast reconstruction with Bayesian compressed sensing , 2011, Magnetic resonance in medicine.

[32]  Petros Maragos,et al.  Structure Tensor Total Variation , 2015, SIAM J. Imaging Sci..

[33]  Guillermo Sapiro,et al.  Vector-valued active contours , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  M. Burger,et al.  Joint reconstruction via coupled Bregman iterations with applications to PET-MR imaging , 2017, 1704.06073.

[35]  E. Adalsteinsson,et al.  Vectorial total generalized variation for accelerated multi-channel multi-contrast MRI. , 2016, Magnetic resonance imaging.

[36]  Eldad Haber,et al.  Model Fusion and Joint Inversion , 2013, Surveys in Geophysics.

[37]  Julian Rasch,et al.  Dynamic MRI reconstruction from undersampled data with an anatomical prescan , 2017, Inverse Problems.

[38]  M. Grasmair,et al.  Anisotropic Total Variation Filtering , 2010 .

[39]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[40]  Joachim Weickert E � cient and Reliable Schemes for Nonlinear Di usion Filtering , 2005 .

[41]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..