Structure detection: a statistically certified unsupervised learning procedure

[1]  William Bialek,et al.  Seeing Beyond the Nyquist Limit , 1999, Neural Computation.

[2]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[3]  Jürgen Schmidhuber,et al.  Semilinear Predictability Minimization Produces Well-Known Feature Detectors , 1996, Neural Computation.

[4]  R W Prager,et al.  Development of low entropy coding in a recurrent network. , 1996, Network.

[5]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[6]  C. C. Law,et al.  Formation of receptive fields in realistic visual environments according to the Bienenstock, Cooper, and Munro (BCM) theory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[7]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[8]  Nathan Intrator,et al.  Objective function formulation of the BCM theory of visual cortical plasticity: Statistical connections, stability conditions , 1992, Neural Networks.

[9]  Nathan Intrator,et al.  Feature Extraction Using an Unsupervised Neural Network , 1992, Neural Computation.

[10]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[11]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[12]  D. Freedman,et al.  Asymptotics of Graphical Projection Pursuit , 1984 .

[13]  H. Shouval,et al.  Principal component neurons in a realistic visual environment , 1996 .

[14]  C. Fyfe,et al.  Finding compact and sparse-distributed representations of visual images , 1995 .

[15]  H. Shouval,et al.  Localized principal components of natural images-an analytic solution , 1994 .

[16]  Leslie S. Smith,et al.  The principal components of natural images , 1992 .

[17]  Erkki Oja,et al.  Neural Networks, Principal Components, and Subspaces , 1989, Int. J. Neural Syst..

[18]  Terence D. Sanger,et al.  An Optimality Principle for Unsupervised Learning , 1988, NIPS.

[19]  Robin Sibson,et al.  What is projection pursuit , 1987 .