Vibration and damping analysis of a multilayered cylindrical shell. I - Theoretical analysis

The governing equations of motion for the nonaxisymmetric and axisymmetric variational of a general multilayered cylindrical shell having an arbitrary number of orthotropic material layers have been derived using variational principles. The refined analysis considers bending, extension, and shear deformations in all layers of a multilayered cylindrical shell, including rotary and longitudinal translatory as well as transverse inertias. The solution for a radially simply supported shell has been obtained and the procedure for determining the damping effectiveness in terms of the system loss factor for all families of the modes of vibration in a multilayered shell with elastic and viscoelastic layers is reported. Numerical results are reported in Part II of the paper.