Grain Boundary and Lattice Fracture Toughness of UO2 Measured Using Small-Scale Mechanics

[1]  Z. You,et al.  Atomistic simulation of fracture in UO2 under tensile loading , 2019, Journal of Alloys and Compounds.

[2]  S. Dillon,et al.  In-situ microcantilever deflection to evaluate the interfacial fracture properties of binary Al2O3/SmAlO3 eutectic , 2019, Journal of the European Ceramic Society.

[3]  Hongsheng Chen,et al.  Effect of burnup on the mechanical properties of doped UO2 ceramic pellets using the simfuel technique , 2019, Journal of Nuclear Materials.

[4]  R. Hunt,et al.  Fabrication of UO2-Mo composite fuel with enhanced thermal conductivity from sol-gel feedstock , 2019, Journal of Nuclear Materials.

[5]  J. Lian,et al.  Nano- and micro-indentation testing of sintered UO2 fuel pellets with controlled microstructure and stoichiometry , 2019, Journal of Nuclear Materials.

[6]  Hongxing Xiao,et al.  Investigation of the mechanical properties of ZrO2-doped UO2 ceramic pellets by indentation technique , 2018, Journal of Nuclear Materials.

[7]  M. Harmer,et al.  Surface energies, segregation, and fracture behavior of magnesium aluminate spinel low-index grain boundary planes , 2018 .

[8]  Tao Zhang,et al.  Failure probability analysis and design comparison of multi-layered SiC-based fuel cladding in PWRs , 2018 .

[9]  P. Hosemann Small-scale mechanical testing on nuclear materials: bridging the experimental length-scale gap , 2018 .

[10]  S. Brinckmann,et al.  Stress intensity factor dependence on anisotropy and geometry during micro-fracture experiments , 2017 .

[11]  V. Novikov,et al.  Fracture Toughness of VVER and PWR Uranium-Dioxide Fuel Pellets with Different Grain Size , 2015 .

[12]  Michael R. Tonks,et al.  Molecular dynamics simulations of intergranular fracture in UO2 with nine empirical interatomic potentials , 2014 .

[13]  H. Kleebe,et al.  Effect of Impurities and LiF Additive in Hot‐Pressed Transparent Magnesium Aluminate Spinel , 2013 .

[14]  A. Shinya,et al.  Effect of loading conditions on the fracture toughness of zirconia. , 2013, Journal of prosthodontic research.

[15]  J. Sercombe,et al.  Experimental and numerical study of Fracture mechanisms in UO2 nuclear fuel , 2013 .

[16]  G. Meng,et al.  Mechanical strengthening of Sm-doped CeO2 ceramics by 1 mol% cobalt oxide for solid oxide fuel cell application , 2011 .

[17]  T. Fett,et al.  Fatigue Threshold R‐Curve Behavior of Grain Bridging Ceramics: Role of Grain Size and Grain‐Boundary Adhesion , 2011 .

[18]  Ansar Ahmad,et al.  Fracture properties of sintered UO2 ceramic pellets with duplex microstructure , 2007 .

[19]  A. Akşit,et al.  Investigation of some mechanical properties of Ti2O3-doped UO2 fuel pellets , 2006 .

[20]  R. Ruh,et al.  Young`s modulus, flexural strength, and fracture of yttria-stabilized zirconia versus temperature , 2005 .

[21]  Young-Woo Lee,et al.  Effect of Microstructure on the Fracture Properties of UO2-5wt%CeO2 Pellets , 2002 .

[22]  S. Yamanaka,et al.  Mechanical properties of (U,Ce)O2 , 1998 .

[23]  C. Bernaudat,et al.  Mechanical behaviour modelling of fractured nuclear fuel pellets , 1995 .

[24]  K. Une,et al.  Microstructural change and its influence on fission gas release in high burnup UO2 fuel , 1992 .

[25]  B. Lawn,et al.  Role of grain size in the strength and R-curve properties of alumina , 1990 .

[26]  J. K. Ghosh,et al.  Fracture toughness and fracture surface energy of sintered uranium dioxide fuel pellets , 1987 .

[27]  I. J. Hastings,et al.  Fission gas release from power-ramped UO2 fuel , 1986 .

[28]  M. Fine,et al.  Grain-Boundary Segregation in MgO-Doped Al2O3 , 1972 .

[29]  S. Dutta,et al.  Transparent Y2O3 by hot-pressing , 1969 .

[30]  J. Bates,et al.  Elastic constants of single crystal UO2 at 25° C , 1965 .

[31]  S. Dillon,et al.  The influence of dopants and complexion transitions on grain boundary fracture in alumina , 2018 .

[32]  S. Nemat-Nasser,et al.  Thermally induced radial cracking in fuel element pellets , 1981 .