Theory of electroporation: A review

[1]  J. Weaver,et al.  Observation of extremely heterogeneous electroporative molecular uptake by Saccharomyces cerevisiae which changes with electric field pulse amplitude. , 1995, Biochimica et biophysica acta.

[2]  B. Hille Ionic channels of excitable membranes , 2001 .

[3]  E. Neumann,et al.  Stochastic model for electric field-induced membrane pores. Electroporation. , 1984, Biophysical chemistry.

[4]  J. Weaver,et al.  The electrical capacitance of bilayer membranes: The contribution of transient aqueous pores , 1984 .

[5]  T. Tsong,et al.  Survival of sucrose-loaded erythrocytes in the circulation , 1978, Nature.

[6]  James C. Weaver,et al.  Determination of the electric field and anomalous heating caused by exponential pulses with aluminum electrodes in electroporation experiments , 1996 .

[7]  James C. Weaver,et al.  Electroporation: a unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes☆ , 1991 .

[8]  J. Weaver,et al.  Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[9]  L. Chernomordik,et al.  Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. , 1991, Biophysical journal.

[10]  D. Popescu,et al.  The transversal diffusion coefficient of phospholipid molecules through black lipid membranes , 1991 .

[11]  J. Weaver,et al.  bis-The diffusive permeability of bilayer membranes: The contribution of transient aqueous pores , 1984 .

[12]  Roland Benz,et al.  Cells with Manipulated Functions: New Perspectives for Cell Biology, Medicine, and Technology , 1981 .

[13]  J. A. Gimm,et al.  Quantitative study of molecular transport due to electroporation: uptake of bovine serum albumin by erythrocyte ghosts. , 1994, Biophysical journal.

[14]  E. Neumann,et al.  Membrane Electroporation: Biophysical and Biotechnical Aspects , 1989 .

[15]  S. L. Hartford,et al.  Electrophoretic light scattering on calf thymus deoxyribonucleic acdi and tobacco mosaic virus. , 1975, Macromolecules.

[16]  James C. Weaver,et al.  Electroporation: The population distribution of macromolecular uptake and shape changes in red blood cells following a single 50 μs square wave pulse☆ , 1988 .

[17]  Winterhalter,et al.  Effect of voltage on pores in membranes. , 1987, Physical review. A, General physics.

[18]  C. Nicolau,et al.  Electro-insertion of xeno-glycophorin into the red blood cell membrane. , 1989, Biochemical and biophysical research communications.

[19]  E. Neumann,et al.  Gene transfer into mouse lyoma cells by electroporation in high electric fields. , 1982, The EMBO journal.

[20]  U. Zimmermann,et al.  Electric field-mediated fusion and related electrical phenomena. , 1982, Biochimica et biophysica acta.

[21]  D. Wobschall Voltage dependence of bilayer membrane capacitance , 1972 .

[22]  D. Dimitrov Kinetic mechanisms of membrane fusion mediated by electric fields , 1993 .

[23]  D. Stenger,et al.  Uptake of fluorescence-labeled dextrans by 10T 1/2 fibroblasts following permeation by rectangular and exponential-decay electric field pulses. , 1988, BioTechniques.

[24]  J Teissié,et al.  Specific electropermeabilization of leucocytes in a blood sample and application to large volumes of cells. , 1990, Biochimica et biophysica acta.

[25]  J. Weaver,et al.  Conduction onset criteria for transient aqueous pores and reversible electrical breakdown in bilayer membranes , 1986 .

[26]  T. Reese,et al.  Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. , 1990, Biophysical journal.

[27]  J. Weaver,et al.  Changes in the passive electrical properties of human stratum corneum due to electroporation. , 1995, Biochimica et biophysica acta.

[28]  Y. Chizmadzhev,et al.  Electrical Breakdown of Lipid Bilayer Membranes Phenomenology and Mechanism , 1989 .

[29]  F. Conti,et al.  Reversible electrical breakdown of squid giant axon membrane. , 1981, Biochimica et biophysica acta.

[30]  W. Helfrich,et al.  Deformation of spherical vesicles by electric fields , 1988 .

[31]  Martin Blank,et al.  Electricity and Magnetism in Biology and Medicine , 1995 .

[32]  M. Lieber,et al.  Electropore diameters, lifetimes, numbers, and locations in individual erythrocyte ghosts , 1986, FEBS letters.

[33]  M. Okino,et al.  Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. , 1987, Japanese journal of cancer research : Gann.

[34]  James C. Weaver,et al.  Electroporation in cells and tissues: A biophysical phenomenon due to electromagnetic fields , 1995 .

[35]  L Tung,et al.  Cell-attached patch clamp study of the electropermeabilization of amphibian cardiac cells. , 1991, Biophysical journal.

[36]  J. Hall Access resistance of a small circular pore , 1975, The Journal of general physiology.

[37]  E. M. Renkin,et al.  FILTRATION, DIFFUSION, AND MOLECULAR SIEVING THROUGH POROUS CELLULOSE MEMBRANES , 1954, The Journal of general physiology.

[38]  R. Benz,et al.  The resealing process of lipid bilayers after reversible electrical breakdown. , 1981, Biochimica et biophysica acta.

[39]  J. Gauthier,et al.  Electroporation-mediated uptake of proteins into mammalian cells. , 1990, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[40]  P. Elias,et al.  Structural and lipid biochemical correlates of the epidermal permeability barrier. , 1991, Advances in lipid research.

[41]  D. Chang 2 – Structure and Dynamics of Electric Field-Induced Membrane Pores as Revealed by Rapid-Freezing Electron Microscopy , 1991 .

[42]  Herman P. Schwan,et al.  Dielectrophoresis and Rotation of Cells , 1989 .

[43]  R. Lee,et al.  Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Peter C. Jordan Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential. , 1983, Biophysical journal.

[45]  A. Parsegian,et al.  Energy of an Ion crossing a Low Dielectric Membrane: Solutions to Four Relevant Electrostatic Problems , 1969, Nature.

[46]  H. Itoh,et al.  Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. , 1988, Biophysical journal.

[47]  Y. Chizmadzhev,et al.  251 - Electric breakdown of bilayer lipid membranes VI. A stochastic theory taking into account the processes of defect formation and death: Membrane lifetime distribution function , 1979 .

[48]  J. Weaver,et al.  Mechanism of electroinduced ionic species transport through a multilamellar lipid system. , 1995, Biophysical journal.

[49]  J. Weaver,et al.  Transient aqueous pores in bilayer membranes: A statistical theory , 1986 .

[50]  A. Babakov,et al.  Influence of Electric Field on the Capacity of Phospholipid Membranes , 1966, Nature.

[51]  J. Weaver,et al.  A quantitative study of electroporation showing a plateau in net molecular transport. , 1993, Biophysical journal.

[52]  J. Newman Resistance for Flow of Current to a Disk , 1966 .

[53]  T. Tsong,et al.  Formation and resealing of pores of controlled sizes in human erythrocyte membrane , 1977, Nature.

[54]  R Latorre,et al.  Voltage-dependent capacitance in lipid bilayers made from monolayers. , 1978, Biophysical journal.

[55]  Martin Blank,et al.  Electromagnetic Fields: Biological Interactions and Mechanisms , 1995 .

[56]  T. Tsong,et al.  Study of mechanisms of electric field-induced DNA transfection. II. Transfection by low-amplitude, low-frequency alternating electric fields. , 1990, Biophysical journal.

[57]  L. Chernomordik 5 – Electropores in Lipid Bilayers and Cell Membranes , 1991 .

[58]  Y. Chizmadzhev,et al.  248 - Electric breakdown of bilayer lipid membranes III. Analysis of possible mechanisms of defect origination , 1979 .

[59]  R. Benz,et al.  Pulse-length dependence of the electrical breakdown in lipid bilayer membranes. , 1980, Biochimica et biophysica acta.

[60]  Justin Teissié,et al.  Exogenous uptake and release of molecules by electroloaded cells: A digitized videomicroscopy study , 1993 .

[61]  H. Itoh,et al.  Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. , 1991, Biophysical journal.

[62]  D. Chang,et al.  Guide to Electroporation and Electrofusion , 1991 .

[63]  A. Barnett,et al.  The current-voltage relation of an aqueous pore in a lipid bilayer membrane. , 1990, Biochimica et biophysica acta.

[64]  A. Petrov,et al.  Edge energy and pore stability in bilayer lipid membranes , 1981 .

[65]  S. Schuster,et al.  Transfer of monoclonal antibodies into mammalian cells by electroporation. , 1989, The Journal of biological chemistry.

[66]  L. Mir,et al.  Cell electropermeabilization: a new tool for biochemical and pharmacological studies. , 1993, Biochimica et biophysica acta.

[67]  A. Sokirko Distribution of the electric field in an axially symmetric pore , 1994 .

[68]  M Montal,et al.  Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[69]  James C. Weaver,et al.  Decreased bilayer stability due to transmembrane potentials , 1981 .

[70]  A. Bahnson,et al.  Addition of serum to electroporated cells enhances survival and transfection efficiency. , 1990, Biochemical and biophysical research communications.

[71]  W. Hamilton,et al.  Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts , 1967 .

[72]  E Neumann,et al.  Model of cell electrofusion. Membrane electroporation, pore coalescence and percolation. , 1987, Biophysical chemistry.

[73]  E. Tekle,et al.  Electroporation by using bipolar oscillating electric field: an improved method for DNA transfection of NIH 3T3 cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[74]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[75]  L. Chernomordik,et al.  Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. , 1992, Biophysical journal.

[76]  T. Tsong,et al.  Electroporation of cell membranes. , 1991, Biophysical journal.

[77]  Y. Chizmadzhev,et al.  251 bis - Electric breakdown of bilayer lipid membranes VII. A stochastic theory taking into account the processes of defect formation and death: Statistical properties , 1979 .

[78]  R. Potts,et al.  Pulsatile transdermal delivery of LHRH using electroporation: Drug delivery and skin toxicology , 1995 .

[79]  L. Chernomordik,et al.  The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. , 1987, Biochimica et biophysica acta.

[80]  E. Neumann,et al.  Electroporation and Electrofusion in Cell Biology , 1989, Springer US.

[81]  L. Mir,et al.  Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: direct access to the cytosol. , 1988, Experimental cell research.

[82]  L. Chernomordik,et al.  467—The reversible electrical breakdown of bilayer lipid membranes modified by uranyl ions , 1982 .

[83]  J. Weaver,et al.  Tissue Electroporation for Localized Drug Delivery , 1995 .

[84]  M. Blank An Approach to a Theory of Monolayer Permeation by Gases , 1964 .

[85]  U. Zimmermann,et al.  Evidence for a symmetrical uptake of fluorescent dyes through electro‐permeabilized membranes of Avena mesophyll protoplasts , 1985 .

[86]  D. Dimitrov,et al.  Membrane electroporation--fast molecular exchange by electroosmosis. , 1990, Biochimica et biophysica acta.

[87]  D. Zhelev,et al.  Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. , 1993, Biochimica et biophysica acta.

[88]  D. Volsky,et al.  Full-length CD4 electroinserted in the erythrocyte membrane as a long-lived inhibitor of infection by human immunodeficiency virus. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Giulio Milazzo,et al.  Topics in Bioelectrochemistry and Bioenergetics , 1978 .

[90]  James C. Weaver,et al.  Electroporation of human skin: simultaneous measurement of changes in the transport of two fluorescent molecules and in the passive electrical properties , 1996 .

[91]  L. Chernomordik,et al.  468—the study of the BLM reversible electrical breakdown mechanism in the presence of UO22+ , 1982 .

[92]  L. Bata Advances in liquid crystal research and applications , 1982 .

[93]  D. H. Michael,et al.  On making holes in a sheet of fluid , 1973, Journal of Fluid Mechanics.

[94]  I. Sugár A theory of the electric field-induced phase transition of phospholipid bilayers. , 1979, Biochimica et biophysica acta.

[95]  Peter C. Jordan Effect of pore structure on energy barriers and applied voltage profiles. I. Symmetrical channels. , 1984, Biophysical journal.

[96]  Sugár Ip The effects of external fields on the structure of lipid bilayers. , 1981 .

[97]  James C. Weaver,et al.  7 – Progress toward a Theoretical Model for Electroporation Mechanism: Membrane Electrical Behavior and Molecular Transport , 1991 .

[98]  D. Berglund,et al.  Introduction of antibody into viable cells using electroporation. , 1991, Cytometry.

[99]  Y. Chizmadzhev,et al.  250 - Electric breakdown of bilayer lipid membranes V. Consideration of the kinetic stage in the case of the membrane containing an arbitrary number of defects , 1979 .

[100]  C Sauterey,et al.  Osmotic pressure induced pores in phospholipid vesicles. , 1975, Biochemistry.

[101]  M. R. Tarasevich,et al.  246 - Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion , 1979 .

[102]  L. Chernomordik,et al.  Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. , 1988, Biochimica et biophysica acta.

[103]  J. Weaver,et al.  Electroporation: High frequency of occurrence of a transient high‐permeability state in erythrocytes and intact yeast , 1988, FEBS letters.

[104]  C. Haest,et al.  Dielectric breakdown of the erythrocyte membrane enhances transbilayer mobility of phospholipids. , 1983, Biochimica et biophysica acta.

[105]  J. Weaver,et al.  Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation. , 1994, Biophysical journal.

[106]  D. H. Michael,et al.  Electrohydrodynamic instability in plane layers of fluid , 1970, Journal of Fluid Mechanics.

[107]  T. Tsong,et al.  Voltage-induced pore formation and hemolysis of human erythrocytes. , 1977, Biochimica et biophysica acta.

[108]  I. Tsoneva,et al.  Effective production by electrofusion of hybridomas secreting monoclonal antibodies against Hc-antigen of Salmonella , 1990 .

[109]  L. Chernomordik,et al.  466—Effects of UO22+ ions on the properties of bilayer lipid membranes , 1982 .

[110]  R. Benz,et al.  Relaxation studies on cell membranes and lipid bilayers in the high electric field range , 1980 .

[111]  A. V. Prokhorov,et al.  On the theory of the rupture of black films , 1981 .

[112]  T. Tsong,et al.  Voltage-induced conductance in human erythrocyte membranes. , 1979, Biochimica et biophysica acta.

[113]  J. Vienken,et al.  Development of drug carrier systems: Electrical field induced effects in cell membranes* , 1980 .

[114]  J. Weaver,et al.  The number of molecules taken up by electroporated cells: quantitative determination , 1989, FEBS letters.

[115]  P. Usherwood,et al.  Charge and Field Effects in Biosystems―2 , 1990 .

[116]  J. Weaver,et al.  Electroporation: A general phenomenon for manipulating cells and tissues , 1993, Journal of cellular biochemistry.

[117]  J. Crowley,et al.  Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. , 1973, Biophysical journal.

[118]  R. Benz,et al.  Voltage-induce capacitance relaxation of lipid bilayer membranes. Effects of membrane composition. , 1976, Biochimica et biophysica acta.