Unsupervised Image Segmentation Using Markov Random Fields

In this study, we carried out an unsupervised gray level image segmentation based on Markov Random Fields (MRF) model. First, we use the Expectation Maximization (EM) algorithm to estimate the distribution of the input image and the number of the components is automatically determined by the Minimum Message Length (MML) algorithm. Then the segmentation is done by the Iterated Conditional Modes (ICM) algorithm. For testing the segmentation performance, we use both artificial images and real images. The experimental results are satisfactory.

[1]  Josiane Zerubia,et al.  Unsupervised parallel image classification using Markovian models , 1999, Pattern Recognit..

[2]  David L. Dowe,et al.  Minimum Message Length and Kolmogorov Complexity , 1999, Comput. J..

[3]  Jun Liu,et al.  Unsupervised texture segmentation with one-step mean shift and boundary Markov random fields , 2001, Pattern Recognit. Lett..

[4]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[5]  David A. Clausi,et al.  Unsupervised image segmentation using a simple MRF model with a new implementation scheme , 2004, ICPR 2004.

[6]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[7]  Anil K. Jain,et al.  MRF model-based algorithms for image segmentation , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[8]  John Chung-Mong Lee,et al.  Color image segmentation and parameter estimation in a markovian framework , 2001, Pattern Recognit. Lett..

[9]  James C. Bezdek,et al.  Fuzzy Kohonen clustering networks , 1994, Pattern Recognit..

[10]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[13]  Bülent Sankur,et al.  Color image segmentation using histogram multithresholding and fusion , 2001, Image Vis. Comput..

[14]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .