The phosphorylated regulator of chemotaxis is crucial throughout biofilm biogenesis in Shewanella oneidensis

[1]  P. Graumann,et al.  Cyclic di-GMP Signaling in Bacillus subtilis Is Governed by Direct Interactions of Diguanylate Cyclases and Cognate Receptors , 2020, mBio.

[2]  M. Li,et al.  The SiaA/B/C/D signaling network regulates biofilm formation in Pseudomonas aeruginosa , 2020, The EMBO journal.

[3]  O. Lemaire,et al.  The Shewanella genus: ubiquitous organisms sustaining and preserving aquatic ecosystems. , 2020, FEMS microbiology reviews.

[4]  V. Sourjik,et al.  Chemotaxis and cyclic‐di‐GMP signalling control surface attachment of Escherichia coli , 2019, Molecular microbiology.

[5]  J. Lloret,et al.  A partner-switching system controls activation of mixed-linkage β-glucan synthesis by c-di-GMP in Sinorhizobium meliloti. , 2019, Environmental microbiology.

[6]  Y. Brun,et al.  The Two Chemotaxis Clusters in Caulobacter crescentus Play Different Roles in Chemotaxis and Biofilm Regulation , 2019, Journal of bacteriology.

[7]  I. Zhulin,et al.  Cross Talk between Chemosensory Pathways That Modulate Chemotaxis and Biofilm Formation , 2019, mBio.

[8]  C. Jourlin-Castelli,et al.  Control of pellicle biogenesis involves the diguanylate cyclases PdgA and PdgB, the c‐di‐GMP binding protein MxdA and the chemotaxis response regulator CheY3 in Shewanella oneidensis , 2018, Environmental microbiology.

[9]  V. Sourjik,et al.  Stimulus sensing and signal processing in bacterial chemotaxis. , 2018, Current opinion in microbiology.

[10]  M. Molmeret,et al.  Multispecies Biofilm Development of Marine Bacteria Implies Complex Relationships Through Competition and Synergy and Modification of Matrix Components , 2018, Front. Microbiol..

[11]  G. Alexandre,et al.  A Chemotaxis-Like Pathway of Azorhizobium caulinodans Controls Flagella-Driven Motility, Which Regulates Biofilm Formation, Exopolysaccharide Biosynthesis, and Competitive Nodulation. , 2018, Molecular Plant-Microbe Interactions.

[12]  S. Albers,et al.  Structure and function of the archaeal response regulator CheY , 2018, Proceedings of the National Academy of Sciences.

[13]  M. Fons,et al.  ChrASO, the chromate efflux pump of Shewanella oneidensis, improves chromate survival and reduction , 2017, PloS one.

[14]  C. Waters,et al.  The Agrobacterium tumefaciens CheY-like protein ClaR regulates biofilm formation. , 2017, Microbiology.

[15]  U. Jenal,et al.  Cyclic di-GMP: second messenger extraordinaire , 2017, Nature Reviews Microbiology.

[16]  R. Jia,et al.  FlrA Represses Transcription of the Biofilm-Associated bpfA Operon in Shewanella putrefaciens , 2016, Applied and Environmental Microbiology.

[17]  M. Fons,et al.  The General Stress Response σS Is Regulated by a Partner Switch in the Gram-negative Bacterium Shewanella oneidensis* , 2016, The Journal of Biological Chemistry.

[18]  U. Jenal,et al.  The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility , 2016, PLoS genetics.

[19]  Gaël Chambonnier,et al.  The Hybrid Histidine Kinase LadS Forms a Multicomponent Signal Transduction System with the GacS/GacA Two-Component System in Pseudomonas aeruginosa , 2016, PLoS genetics.

[20]  H. Sondermann,et al.  Mechanistic insights into c-di-GMP–dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa , 2015, Proceedings of the National Academy of Sciences.

[21]  H. Sondermann,et al.  Contribution of Physical Interactions to Signaling Specificity between a Diguanylate Cyclase and Its Effector , 2015, mBio.

[22]  Michael Y. Galperin,et al.  Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms , 2015, Journal of bacteriology.

[23]  Ronn S. Friedlander,et al.  Role of Flagella in Adhesion of Escherichia coli to Abiotic Surfaces. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[24]  J. S. Parkinson,et al.  Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. , 2015, Trends in microbiology.

[25]  C. Jourlin-Castelli,et al.  Gram-negative bacteria can also form pellicles. , 2014, Environmental microbiology reports.

[26]  Ramin Golestanian,et al.  Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment , 2014, Nature Communications.

[27]  R. Hengge,et al.  Stress responses go three dimensional – the spatial order of physiological differentiation in bacterial macrocolony biofilms , 2014, Environmental microbiology.

[28]  C. Jourlin-Castelli,et al.  Aerotaxis governs floating biofilm formation in Shewanella oneidensis. , 2013, Environmental Microbiology.

[29]  A. Spormann,et al.  PdeB, a Cyclic Di-GMP-Specific Phosphodiesterase That Regulates Shewanella oneidensis MR-1 Motility and Biofilm Formation , 2013, Journal of bacteriology.

[30]  Michael Y. Galperin,et al.  Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger , 2013, Microbiology and Molecular Reviews.

[31]  E. Bouveret,et al.  The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. , 2012, Methods.

[32]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[33]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[34]  M. Parsek,et al.  The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP , 2012, Nucleic acids research.

[35]  Ned S Wingreen,et al.  Responding to chemical gradients: bacterial chemotaxis. , 2012, Current opinion in cell biology.

[36]  V. Michotey,et al.  The chemical-in-μwell: a high-throughput technique for identifying solutes eliciting a chemotactic response in motile bacteria. , 2011, Research in microbiology.

[37]  J. Ramos,et al.  Diversity at its best: bacterial taxis. , 2011, Environmental microbiology.

[38]  K. Thormann,et al.  Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1 , 2011, The ISME Journal.

[39]  V. Tremaroli,et al.  A histidine-kinase cheA gene of Pseudomonas pseudoalcaligens KF707 not only has a key role in chemotaxis but also affects biofilm formation and cell metabolism , 2011, Biofouling.

[40]  Jizhong Zhou,et al.  Pellicle formation in Shewanella oneidensis , 2010, BMC Microbiology.

[41]  A. Spormann,et al.  Spatiotemporal activity of the mshA gene system in Shewanella oneidensis MR-1 biofilms. , 2010, FEMS microbiology letters.

[42]  S. Lory,et al.  The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs , 2009, Molecular microbiology.

[43]  C. Jourlin-Castelli,et al.  Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis , 2009, Molecular microbiology.

[44]  Regine Hengge,et al.  Principles of c-di-GMP signalling in bacteria , 2009, Nature Reviews Microbiology.

[45]  K. Thormann,et al.  Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR‐1 , 2009, Molecular microbiology.

[46]  H. Sondermann,et al.  Phosphorylation-Independent Regulation of the Diguanylate Cyclase WspR , 2008, PLoS biology.

[47]  M. Schubert,et al.  Gac/Rsm signal transduction pathway of γ‐proteobacteria: from RNA recognition to regulation of social behaviour , 2007, Molecular microbiology.

[48]  J. Gralnick,et al.  Ecology and biotechnology of the genus Shewanella. , 2007, Annual review of microbiology.

[49]  C. Fuqua,et al.  Motility and Chemotaxis in Agrobacterium tumefaciens Surface Attachment and Biofilm Formation , 2007, Journal of bacteriology.

[50]  M. Romine,et al.  Identification and analysis of a highly conserved chemotaxis gene cluster in Shewanella species. , 2007, FEMS microbiology letters.

[51]  Kazuo Kobayashi Bacillus subtilis Pellicle Formation Proceeds through Genetically Defined Morphological Changes , 2007, Journal of bacteriology.

[52]  Barbara J. Wold,et al.  Spatiometabolic Stratification of Shewanella oneidensis Biofilms , 2006, Applied and Environmental Microbiology.

[53]  A. Spormann,et al.  Control of Formation and Cellular Detachment from Shewanella oneidensis MR-1 Biofilms by Cyclic di-GMP , 2006, Journal of bacteriology.

[54]  D. Tifrea,et al.  A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Ward,et al.  Chemotactic Responses to Metals and Anaerobic Electron Acceptors in Shewanella oneidensis MR-1 , 2005, Journal of bacteriology.

[56]  G. Wadhams,et al.  Making sense of it all: bacterial chemotaxis , 2004, Nature Reviews Molecular Cell Biology.

[57]  A. Spormann,et al.  Initial Phases of Biofilm Formation in Shewanella oneidensis MR-1 , 2004, Journal of bacteriology.

[58]  D. Allison,et al.  The Biofilm Matrix , 2003, Biofouling.

[59]  V. Méjean,et al.  Effects of ISSo2 Insertions in Structural and Regulatory Genes of the Trimethylamine Oxide Reductase of Shewanella oneidensis , 2003, Journal of bacteriology.

[60]  J. Stock,et al.  Bacterial chemotaxis , 2003, Current Biology.

[61]  F. Dahlquist,et al.  The 1.9 A resolution crystal structure of phosphono-CheY, an analogue of the active form of the response regulator, CheY. , 2000, Biochemistry.

[62]  Ann M Stock,et al.  Structural analysis of bacterial chemotaxis proteins: components of a dynamic signaling system. , 1998, Journal of structural biology.

[63]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[64]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[65]  V. de Lorenzo,et al.  Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria , 1990, Journal of bacteriology.

[66]  D. Helinski,et al.  Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[67]  R. Appleyard Segregation of New Lysogenic Types during Growth of a Doubly Lysogenic Strain Derived from Escherichia Coli K12. , 1954, Genetics.

[68]  A. Briegel,et al.  Diversity of Bacterial Chemosensory Arrays. , 2019, Trends in microbiology.

[69]  Seok-Yong Lee,et al.  Crystal structure of an activated response regulator bound to its target , 2001, Nature Structural Biology.

[70]  R. Kolter,et al.  Biofilm formation as microbial development. , 2000, Annual review of microbiology.