Achieving the greatest coverage using limited resources has long been a concern for regional planners. Since the 1970s, a variety of models have been studied and relied upon. Finding ways to best represent geographical space remains a challenge to many researchers. Solutions suggested by models vary greatly with different space representation schemes. For example, in the past, points have been widely adopted to represent spatial demand for coverage. However, this simple abstraction of geographical space could bring about inaccuracies and uncertainties, and often compromises its solution quality. Considering that demand can be area based, which is beyond points, objects of different shapes have been proposed as an alternative for representation. With advances in geographic information systems (GISs), the new representation scheme using objects has recently received much attention. Compared with the straightforward point-based abstraction, spatial object representation poses considerable challenges to both model formulation and computation capability. This article revisits model development for the problem of regional coverage maximization and proposes a new formulation where coverage of spatial demand is implicitly modeled. Model testing is conducted through an application to warning siren siting in Dublin, Ohio, which has been studied by other researchers. Results demonstrate the effectiveness of the new model when compared with the existing models.
Uno de los objetivos comunes en la planificacion regional es lograr la maxima cobertura de un servicio con recursos limitados. Desde la decada de los 70s se vienen utilizado una serie de modelos conocidos. Sin embargo, la representacion adecuada del espacio geografico de dichos modelos sigue siendo un problematica para muchos investigadores. Las soluciones derivadas de los modelos varian considerablemente de acuerdo a los diferentes esquemas de representacion utilizados. El uso de puntos por ejemplo, ha sido ampliamente utilizado en el pasado como esquema de representacion espacial de la demanda a ser cubierta por el servicio. Sin embargo, esta simple abstraccion del espacio geografico puede provocar imprecisiones e incertidumbres que a menudo afectan la calidad de la solucion matematica del modelo. En contraste, si la demanda se define como un area que abarca una extension que va mas alla de los puntos es posible proponer—como lo han hecho varios recientemente- el uso de objetos espaciales (de formas variadas) como una alternativa sensata de representacion. Con los avances en los sistemas de informacion geografica (SIG), este nuevo esquema de representacion -que usa objetos especiales- han recibido considerable atencion. En contraste con esquemas sencillos como el basado en puntos, la representacion de objetos espaciales presenta varios desafios en cuanto a la formulacion y computacion del modelo. El presente articulo resena el desarrollo del modelamiento del problema de maxima cobertura regional (problem of regional coverage maximization) y propone una nueva formulacion en la cual la cobertura de la demanda en el espacio es modelada de manera implicita. La evaluacion del modelo se realiza a traves de una aplicacion que usa datos de la ubicacion sirenas de alarma en Dublin, Ohio. Los resultados demuestran la eficacia del nuevo modelo en comparacion con los modelos existentes.
利用有限资源实现最大覆盖一直广受区域规划者关注。自20世纪70年代以来,发展了大量针对这一问题的模型研究。寻找最佳的地理空间表达方式仍是研究者面临的一大挑战。不同模型对于不同的空间表达模式变化很大。比如过去空间覆盖需求多采用点集表达。然而,这种简单的地理空间抽象方法可能会引起不精确性和不确定性,通常也会导致解决方案质量下降。考虑到需求可能是基于区域而非基于点,不同形状的对象已经被当作空间表达可替代的方式。随着GIS技术的进步,基于对象空间表达的新方案近来备受关注。较之于直接基于点的空间抽象,空间对象表达在模型的形式化表达和计算性能上均面临相当大的挑战。本文回顾了区域最大覆盖问题模型研究的发展历程,提出了一个新的蕴含空间覆盖建模需求的模型。以曾被诸多学者研究过的俄亥俄州都柏林的报警器选址问题为例对模型进行检验,结果显示新模型较现有模型更为有效。
[1]
Charles ReVelle,et al.
Optimal location under time or distance constraints
,
1972
.
[2]
Richard L. Church,et al.
The maximal covering location problem
,
1974
.
[3]
John M. Gleason.
A set covering approach to bus stop location
,
1975
.
[4]
Regina Benveniste.
A Note on the Set Covering Problem
,
1982
.
[5]
Charles ReVelle,et al.
Concepts and applications of backup coverage
,
1986
.
[6]
M. Daskin,et al.
Aggregation effects in maximum covering models
,
1990
.
[7]
Morton E. O'Kelly,et al.
Locating Emergency Warning Sirens
,
1992
.
[8]
Harvey J. Miller,et al.
GIS and Geometric Representation in Facility Location Problems
,
1996,
Int. J. Geogr. Inf. Sci..
[9]
Richard L. Church,et al.
Reserve selection as a maximal covering location problem
,
1996
.
[10]
Roger B. Grinde,et al.
Solving an apparel trim placement problem using a maximum cover problem approach
,
1999
.
[11]
David K. Smith,et al.
Use of location-allocation models in health service development planning in developing nations
,
2000,
Eur. J. Oper. Res..
[12]
Morton E. O'Kelly,et al.
Assessing representation error in point-based coverage modeling
,
2002,
J. Geogr. Syst..
[13]
Alan T. Murray.
Site placement uncertainty in location analysis
,
2003,
Comput. Environ. Urban Syst..
[14]
Morton E. O'Kelly,et al.
A lattice covering model for evaluating existing service facilities
,
2004
.
[15]
Alan T. Murray.
Geography in Coverage Modeling: Exploiting Spatial Structure to Address Complementary Partial Service of Areas
,
2005
.
[16]
Raghu Machiraju,et al.
Coverage optimization to support security monitoring
,
2007,
Comput. Environ. Urban Syst..
[17]
Daoqin Tong,et al.
Coverage optimization in continuous space facility siting
,
2007,
Int. J. Geogr. Inf. Sci..
[18]
Richard L. Church,et al.
Regional service coverage modeling
,
2008,
Comput. Oper. Res..
[19]
Edoardo Amaldi,et al.
Optimization models and methods for planning wireless mesh networks
,
2008,
Comput. Networks.
[20]
Alan T. Murray,et al.
Heuristics in Spatial Analysis: A Genetic Algorithm for Coverage Maximization
,
2009
.
[21]
Timothy Beach,et al.
Arising from the Wetlands: Mechanisms and Chronology of Landscape Aggradation in the Northern Coastal Plain of Belize
,
2009
.
[22]
Mustafa S. Canbolat,et al.
Planar maximal covering with ellipses
,
2009,
Comput. Ind. Eng..
[23]
Daoqin Tong,et al.
Maximising coverage of spatial demand for service
,
2009
.
[24]
Daoqin Tong,et al.
Enhancing Classic Coverage Location Models
,
2010
.
[25]
Ioannis Giannikos,et al.
A new model for maximal coverage exploiting GIS capabilities
,
2010,
Eur. J. Oper. Res..
[26]
J. Current,et al.
Analysis of Errors Due to Demand Data Aggregation in the Set Covering and Maximal Covering Location Problems
,
2010
.
[27]
Daoqin Tong,et al.
Maximizing Wireless Mesh Network Coverage
,
2011
.