Multi-scale nonlinear constitutive models using artificial neural networks

[1]  Yong Sun,et al.  Effect of penetration depth on indentation response of soft coatings on hard substrates: a finite element analysis , 2003 .

[2]  Amit K. Ghosh A physically-based constitutive model for metal deformation , 1980 .

[3]  Rao Tummala,et al.  Nonlinear constitutive models from nanoindentation tests using artificial neural networks , 2008 .

[4]  E. Tyulyukovskiy,et al.  Identification of viscoplastic material parameters from spherical indentation data: Part I. Neural networks , 2006 .

[5]  J. Beijer,et al.  Viscoelastic Characterization of Low-Dielectric Constant SiLK Films Using Nanoindentation in Combination With Finite Element Modeling , 2005 .

[6]  Youssef M A Hashash,et al.  Integration of laboratory testing and constitutive modeling of soils , 2007 .

[7]  K. Zeng,et al.  Analysis of nanoindentation creep for polymeric materials , 2004 .

[8]  Wai-Fah Chen,et al.  Constitutive equations for engineering materials , 1994 .

[9]  Michelle L. Oyen,et al.  Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials , 2003 .

[10]  Alexei Bolshakov,et al.  A critical examination of the fundamental relations used in the analysis of nanoindentation data , 1999 .

[11]  Gang Feng,et al.  Effects of Creep and Thermal Drift on Modulus Measurement Using Depth-sensing Indentation , 2002 .

[12]  Shichun Wu,et al.  Modeling of microstructure and constitutive relation during superplastic deformation by fuzzy-neural network , 2003 .

[13]  R. Haj-Ali,et al.  Nonlinear constitutive models for pultruded FRP composites , 2003 .

[14]  M. Pindera,et al.  AN ENDOCHRONIC MODEL FOR THE RESPONSE OF UNIDIRECTIONAL COMPOSITES UNDER OFF-AXIS TENSILE LOAD , 1983 .

[15]  S. Qu,et al.  Indentation of a hard film on a soft substrate: Strain gradient hardening effects , 2007 .

[16]  D. Hicks,et al.  Mechanical state relations for inelastic deformation of iron: The choice of variables☆ , 1976 .

[17]  R. Haj-Ali,et al.  THREE-DIMENSIONAL MICROMECHANICS-BASED CONSTITUTIVE FRAMEWORK FOR ANALYSIS OF PULTRUDED COMPOSITE STRUCTURES , 2001 .

[18]  Rami Haj-Ali,et al.  A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures , 2004 .

[19]  Sundaramoorthy Rajasekaran,et al.  CONSTITUTIVE MODELING OF CONCRETE USING A NEW FAILURE CRITERION , 1996 .

[20]  George Z. Voyiadjis,et al.  SIMULATED MICROMECHANICAL MODELS USING ARTIFICIAL NEURAL NETWORKS , 2001 .

[21]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[22]  G. Pharr,et al.  The indentation size effect in the spherical indentation of iridium: A study via the conventional theory of mechanism-based strain gradient plasticity , 2006 .

[23]  W. Nix,et al.  Finite element analysis of cone indentation , 1991 .

[24]  Rami Haj-Ali Hierarchical material models with microstructure for nonlinear analysis of progressive damage in laminated composite structures , 1996 .

[25]  Huajian Gao,et al.  Identification of elastic-plastic material parameters from pyramidal indentation of thin films , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  C. Sun,et al.  A Simple Flow Rule for Characterizing Nonlinear Behavior of Fiber Composites , 1989 .

[27]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[28]  Jamshid Ghaboussi,et al.  Neural network constitutive model for rate-dependent materials , 2006 .

[29]  Klaus Friedrich,et al.  Dynamic mechanical properties of PTFE based short carbon fibre reinforced composites: experiment and artificial neural network prediction , 2002 .

[30]  Spherical indentation creep following ramp loading , 2005 .

[31]  M. Paley,et al.  Micromechanical analysis of composites by the generalized cells model , 1992 .

[32]  Jamshid Ghaboussi,et al.  New nested adaptive neural networks (NANN) for constitutive modeling , 1998 .

[33]  K. Zeng,et al.  Extracting the mechanical properties of a viscoelastic polymeric film on a hard elastic substrate , 2004 .

[34]  A. A. Caiazzo,et al.  On the Effective Elastic Properties of Composites with Evolving Microcracking , 2000 .

[35]  A. Muliana,et al.  Multiscale Modeling for the Long-Term Behavior of Laminated Composite Structures , 2005 .

[36]  M. E. Waddoups,et al.  A Method of Predicting the Nonlinear Behavior of Laminated Composites , 1969 .

[37]  Stephen W. Tsai,et al.  Nonlinear Elastic Behavior of Unidirectional Composite Laminae , 1973 .

[38]  B. Paul PREDICTION OF ELASTIC CONSTANTS OF MULTI-PHASE MATERIALS , 1959 .

[39]  Ying Du,et al.  Size, geometry and nonuniformity effects of surface-nanocrystalline aluminum in nanoindentation test , 2005 .

[40]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[41]  R. Jones,et al.  A New Material Model for the Nonlinear Biaxial Behavior of ATJ-S Graphite* , 1975 .

[42]  Vassilis Kostopoulos,et al.  3-D Modeling of nanoindentation experiment on a coating-substrate system , 2001 .

[43]  G. Voyiadjis,et al.  Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments , 2004 .

[44]  Multiscale Nonlinear Framework for the Long-Term Behavior of Layered Composite Structures , 2006 .

[45]  Debabrata Chakraborty,et al.  Artificial neural network based delamination prediction in laminated composites , 2005 .

[46]  G. Maugin On the universality of the thermomechanics of forces driving singular sets , 2000 .

[47]  George Z. Voyiadjis,et al.  A physically based gradient plasticity theory , 2006 .

[48]  D. Steinberg,et al.  A constitutive model for metals applicable at high-strain rate , 1980 .

[49]  Francesco Costanzo,et al.  On the constitutive relations of materials with evolving microstructure due to microcracking , 2000 .

[50]  S. Shimizu,et al.  Indentation rheometry for glass-forming materials , 2001 .

[51]  Jd Landes,et al.  THE J INTEGRAL AS A FRACTURE CRITERION , 1972 .

[52]  Mark L. Wilkins,et al.  Impact of cylinders on a rigid boundary , 1973 .

[53]  D. Kwon,et al.  Analysis of sharp-tip-indentation load–depth curve for contact area determination taking into account pile-up and sink-in effects , 2004 .

[54]  A. Muliana,et al.  Nested nonlinear viscoelastic and micromechanical models for the analysis of pultruded composite materials and structures , 2004 .

[55]  A. Saxena,et al.  Artificial neural network and finite element modeling of nanoindentation tests , 2002 .

[56]  Aydogan Savran,et al.  Explicit and implicit viscoplastic models for polymeric composite , 2004 .

[57]  Somsak Swaddiwudhipong,et al.  Artificial neural network model for material characterization by indentation , 2004 .

[58]  T. Bell,et al.  Finite element analysis of the critical ratio of coating thickness to indentation depth for coating property measurements by nanoindentation , 1995 .

[59]  H. T. Hahn,et al.  Nonlinear Behavior of Laminated Composites , 1973 .

[60]  R. Tummala,et al.  Nanocrystalline copper and nickel as ultra high-density chip-to-package interconnections , 2004, 2004 Proceedings. 54th Electronic Components and Technology Conference (IEEE Cat. No.04CH37546).

[61]  Carl T. Herakovich,et al.  Mechanics of Fibrous Composites , 1997 .

[62]  K. Hwang,et al.  The finite deformation theory of Taylor-based nonlocal plasticity , 2004 .

[63]  Yoshihiro Ootao,et al.  Optimization of material composition of FGM hollow circular cylinder under thermal loading: a neural network approach , 1999 .

[64]  Lallit Anand,et al.  On modeling the micro-indentation response of an amorphous polymer , 2006 .

[65]  Zvi Hashin,et al.  Thermoelastic properties and conductivity of carbon/carbon fiber composites , 1990 .

[66]  Zvi Hashin,et al.  The Elastic Moduli of Heterogeneous Materials , 1962 .

[67]  Mathew J. Palakal,et al.  Material model for composites using neural networks , 1993 .

[68]  Hakan Kilic,et al.  Nonlinear behavior of pultruded FRP composites , 2002 .

[69]  Te-Hua Fang,et al.  Nanoindentation characteristics on polycarbonate polymer film , 2004, Microelectron. J..

[70]  Richard M. Barker,et al.  Three-dimensional finite-element analysis of laminated composites☆ , 1972 .

[71]  G. L. Wire,et al.  Work hardening and mechanical equation of state in some metals in monotonic loading , 1976 .

[72]  C. B. Carter,et al.  Reverse plasticity in single crystal silicon nanospheres , 2005 .

[73]  E. W. Hart Constitutive Relations for the Nonelastic Deformation of Metals , 1976 .

[74]  C. T. Herakovich,et al.  Effect of Fiber Anisotropy on Thermal Stresses in Fibrous Composites , 1986 .

[75]  Jamshid Ghaboussi,et al.  Constitutive modeling of geomaterials from non-uniform material tests , 1998 .

[76]  Bochu Wang,et al.  Measurement of Creep Compliance of Solid Polymers by Nanoindentation , 2003 .