Polarimetric SAR Image Classification Using Geodesic Distances and Composite Kernels

The covariance/coherence matrices are the most common way of representing polarimetric information in the polarimetric synthetic aperture radar (PolSAR) data and have been extensively used in PolSAR classification. Since PolSAR covariance and coherence matrices are Hermitian positive-definite, they form a nonlinear manifold, rather than Euclidean space. Though the geodesic distance measures defined on a manifold are suitable for describing similarities of PolSAR matrix data, the nonlinearity of the manifold often makes the involved optimization problems awkward. To address this problem, we propose to embed the manifold-based PolSAR data into a high (infinite)-dimensional reproducing kernel Hilbert space by Stein kernel and log-Euclidean kernel. Besides, we introduce the composite kernel into the sparse representation classification in order to exploit the spatial context information of PolSAR data. The proposed method is assessed using different PolSAR datasets. Experimental results demonstrate the superior performance compared with the methods without the use of contextual information.

[1]  Gustavo Camps-Valls,et al.  Composite kernels for hyperspectral image classification , 2006, IEEE Geoscience and Remote Sensing Letters.

[2]  Brian C. Lovell,et al.  Sparse Coding on Symmetric Positive Definite Manifolds Using Bregman Divergences , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[3]  Gang Liu,et al.  A Color-Texture-Structure Descriptor for High-Resolution Satellite Image Classification , 2016, Remote. Sens..

[4]  Hongdong Li,et al.  Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Torbjørn Eltoft,et al.  Classification With a Non-Gaussian Model for PolSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[6]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[7]  Alejandro C. Frery,et al.  The polarimetric 𝒢 distribution for SAR data analysis , 2005 .

[8]  Anoop Cherian,et al.  Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[10]  Florence Tupin,et al.  Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields , 2003, IEEE Trans. Geosci. Remote. Sens..

[11]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Ron Kwok,et al.  Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution , 1994 .

[13]  Jian Yang,et al.  Land Cover Classification for Polarimetric SAR Images Based on Mixture Models , 2014, Remote. Sens..

[14]  Yan Yang,et al.  Multi-shot person re-identification via relational Stein divergence , 2013, 2013 IEEE International Conference on Image Processing.

[15]  Avik Bhattacharya,et al.  Change Detection in Polarimetric SAR Images Using a Geodesic Distance Between Scattering Mechanisms , 2017, IEEE Geoscience and Remote Sensing Letters.

[16]  Florence Tupin,et al.  NL-SAR: A Unified Nonlocal Framework for Resolution-Preserving (Pol)(In)SAR Denoising , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[17]  S. Sra Positive definite matrices and the S-divergence , 2011, 1110.1773.

[18]  R. Bhatia Positive Definite Matrices , 2007 .

[19]  Jon Atli Benediktsson,et al.  Generalized Composite Kernel Framework for Hyperspectral Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Dan Zhang,et al.  Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information , 2016, IEEE Geoscience and Remote Sensing Letters.

[21]  Wen Yang,et al.  Dissimilarity measurements for processing and analyzing PolSAR data: A survey , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[22]  Lamei Zhang,et al.  Polarimetric SAR image classification based on contextual sparse representation , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[23]  Gui-Song Xia,et al.  Learning High-level Features for Satellite Image Classification With Limited Labeled Samples , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Xiaojing Huang,et al.  Region-based change detection of PolSAR images using analytic information-theoretic divergence , 2015, 2015 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp).

[25]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[26]  Gui-Song Xia,et al.  Region-Based Change Detection for Polarimetric SAR Images Using Wishart Mixture Models , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Jocelyn Chanussot,et al.  Evaluation of ICA-Based ICTD for PolSAR Data Analysis Using a Sliding Window Approach: Convergence Rate, Gaussian Sources, and Spatial Correlation , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Gustavo Camps-Valls,et al.  Spatio-Spectral Remote Sensing Image Classification With Graph Kernels , 2010, IEEE Geoscience and Remote Sensing Letters.

[29]  Hui Song,et al.  Unsupervised Classification of PolSAR Imagery via Kernel Sparse Subspace Clustering , 2016, IEEE Geoscience and Remote Sensing Letters.

[30]  Fan Yang,et al.  Multi-Frequency Polarimetric SAR Classification Based on Riemannian Manifold and Simultaneous Sparse Representation , 2015, Remote. Sens..

[31]  Lamei Zhang,et al.  Fully Polarimetric SAR Image Classification via Sparse Representation and Polarimetric Features , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[32]  Gustavo Camps-Valls,et al.  Multisource Composite Kernels for Urban-Image Classification , 2010, IEEE Geoscience and Remote Sensing Letters.

[33]  Mingsheng Liao,et al.  Unsupervised PolSAR Imagery Classification Based On Jensen-Bregman LogDet Divergence , 2014 .

[34]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[35]  Silvana G. Dellepiane,et al.  Exploiting spatial correlation features for SAR image analysis , 2000, IEEE Trans. Geosci. Remote. Sens..

[36]  Laurent Ferro-Famil,et al.  Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2001, IEEE Trans. Geosci. Remote. Sens..

[37]  Hui Song,et al.  Unsupervised classification of polarimetric SAR imagery using large-scale spectral clustering with spatial constraints , 2015 .

[38]  Yasser Maghsoudi,et al.  Classification of Polarimetric SAR Images Based on Modeling Contextual Information and Using Texture Features , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Gabriele Moser,et al.  A Textural–Contextual Model for Unsupervised Segmentation of Multipolarization Synthetic Aperture Radar Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Baba C. Vemuri,et al.  Recursive Estimation of the Stein Center of SPD Matrices and Its Applications , 2013, 2013 IEEE International Conference on Computer Vision.

[41]  Chongzhao Han,et al.  PolSAR Data Segmentation by Combining Tensor Space Cluster Analysis and Markovian Framework , 2010, IEEE Geoscience and Remote Sensing Letters.

[42]  Yiming Pi,et al.  Polarimetric Contextual Classification of PolSAR Images Using Sparse Representation and Superpixels , 2014, Remote. Sens..

[43]  Gustavo Camps-Valls,et al.  Learning Relevant Image Features With Multiple-Kernel Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Olaf Hellwich,et al.  Iterative Bilateral Filtering of Polarimetric SAR Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[45]  Lorenzo Bruzzone,et al.  A Composite Semisupervised SVM for Classification of Hyperspectral Images , 2009, IEEE Geoscience and Remote Sensing Letters.

[46]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[47]  Gabriele Moser,et al.  Unsupervised Change Detection From Multichannel SAR Data by Markovian Data Fusion , 2009, IEEE Transactions on Geoscience and Remote Sensing.