On the Complexity of Polytope Isomorphism Problems

Abstract. We show that the problem to decide whether two (convex) polytopes, given by their vertex-facet incidences, are combinatorially isomorphic is graph isomorphism complete, even for simple or simplicial polytopes. On the other hand, we give a polynomial time algorithm for the combinatorial polytope isomorphism problem in bounded dimensions. Furthermore, we derive that the problems to decide whether two polytopes, given either by vertex or by facet descriptions, are projectively or affinely isomorphic are graph isomorphism hard.

[1]  Roswitha Blind,et al.  Puzzles and polytope isomorphisms , 1987 .

[2]  Eugene M. Luks,et al.  Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[3]  Scott Fortin The Graph Isomorphism Problem , 1996 .

[4]  Gary L. Miller,et al.  Graph isomorphism, general remarks , 1977, STOC '77.

[5]  Konrad Polthier,et al.  Publication of Interactive Visualizations with Java View , 2002 .

[6]  Frank Harary,et al.  Graph Theory , 2016 .

[7]  Rudolf Mathon,et al.  A Note on the Graph Isomorphism counting Problem , 1979, Inf. Process. Lett..

[8]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[9]  B. D. Mckay,et al.  Practical graph isomorphism, Numerical mathematics and computing, Proc. 10th Manitoba Conf., Winnipeg/Manitoba 1980 , 1981 .

[10]  Stan Franklin,et al.  Testing homotopy equivalence is isomorphism complete , 1986, Discret. Appl. Math..

[11]  Christian Knauer,et al.  Testing the congruence of d-dimensional point sets , 2000, SCG '00.

[12]  ColbournMarlene Jones,et al.  Graph isomorphism and self-complementary graphs , 1978 .

[13]  J. Köbler,et al.  The Graph Isomorphism Problem: Its Structural Complexity , 1993 .

[14]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[15]  Marc E. Pfetsch,et al.  Computing the face lattice of a polytope from its vertex-facet incidences , 2002, Comput. Geom..

[16]  John Shawe-Taylor,et al.  Homeomorphism of 2-Complexes is Graph Isomorphism Complete , 1994, SIAM J. Comput..

[17]  L. Babai Automorphism groups, isomorphism, reconstruction , 1996 .

[18]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[19]  Martin Kutz Computing roots of directed graphs is graph isomorphism hard , 2002, math/0207020.

[20]  Dexter Kozen,et al.  Complexity of finitely presented algebras , 1977, STOC '77.

[21]  David G. Kirkpatrick,et al.  A Theoretical Analysis of Various Heuristics for the Graph Isomorphism Problem , 1980, SIAM J. Comput..

[22]  Derek G. Corneil,et al.  The graph isomorphism disease , 1977, J. Graph Theory.

[23]  Charles J. Colbourn,et al.  Graph isomorphism and self-complementary graphs , 1978, SIGA.

[24]  Christoph M. Hoffmann,et al.  Group-Theoretic Algorithms and Graph Isomorphism , 1982, Lecture Notes in Computer Science.

[25]  Gil Kalai A simple way to tell a simple polytope from its graph , 1988, J. Comb. Theory, Ser. A.

[26]  Kellogg S. Booth,et al.  Linear algorithms to recognize interval graphs and test for the consecutive ones property , 1975, STOC.

[27]  Tatsuya Akutsu On determining the congruence of point sets in d dimensions , 1998, Comput. Geom..

[28]  Anna Lubiw,et al.  Some NP-Complete Problems Similar to Graph Isomorphism , 1981, SIAM J. Comput..

[29]  Kellogg S. Booth,et al.  Isomorphism Testing for Graphs, Semigroups, and Finite Automata Are Polynomially Equivalent Problems , 1978, SIAM J. Comput..