A survey of controllability and stabilization results for partial differential equations

This paper surveys several issues related to the control of partial differential equa- tions (PDE). The main focus is on the exact controllability property, which corresponds to the question of whether the solution of a PDE can be driven to a given state at a given final time by means of a control acting on a subregion of the domain or of the boundary. It is demonstrated that such a property is equivalent to an observability property for the adjoint system. The study of the exact controllability is detailed on several examples, including the wave equation, the heat equation, and the plate equation in dimension one. The controllability of the Korteweg-de Vries equation is also detailed in order to give an insight of the ideas involved in the control of a nonlinear PDE. The last part of the paper is devoted to the stabilization issue and to its connections with the controllability properties. RESUME. Cet article passe en revue diverses questions liees au controle des equations aux deri- vees partielles (EDP). La question principale sur laquelle se focalise le papier est celle de la controlabilite exacte, qui correspond au fait que la solution d'une EDP peut etre amenee a un etat donne au bout d'un temps donne au moyen d'un controle agissant sur une sous-region du

[1]  Kangsheng Liu Locally Distributed Control and Damping for the Conservative Systems , 1997 .

[2]  Nicolas Burq,et al.  Contrôlabilité exacte des ondes dans des ouverts peu réguliers , 1997 .

[3]  Gathleen S. Morawetz The limiting amplitude principle for arbitrary finite bodies , 1965 .

[4]  O Yu Emanuilov,et al.  Controllability of parabolic equations , 1995 .

[5]  A. Haraux,et al.  Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire , 1989 .

[6]  M. Slemrod A Note on Complete Controllability and Stabilizability for Linear Control Systems in Hilbert Space , 1974 .

[7]  Lop Fat Ho Observabilité frontière de l'équation des ondes , 1986 .

[8]  Jerzy Zabczyk,et al.  Mathematical control theory - an introduction , 1992, Systems & Control: Foundations & Applications.

[9]  Jean-Michel Coron,et al.  Exact boundary controllability of a nonlinear KdV equation with critical lengths , 2004 .

[10]  G. Lebeau Contrôle de l'équation de Schrödinger , 1992 .

[11]  Lionel Rosier CONTROL OF THE SURFACE OF A FLUID BY A WAVEMAKER , 2004 .

[12]  J. Prüss On the Spectrum of C 0 -Semigroups , 1984 .

[13]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[14]  Wolfgang Arendt,et al.  Tauberian theorems and stability of one-parameter semigroups , 1988 .

[15]  George Weiss,et al.  Admissibility of unbounded control operators , 1989 .

[16]  F. J. Narcowich,et al.  Exponential decay of energy of evolution equations with locally distributed damping , 1991 .

[17]  G. Lebeau,et al.  Contróle Exact De Léquation De La Chaleur , 1995 .

[18]  M. Zworski,et al.  Geometric control in the presence of a black box , 2004 .

[19]  Nonharmonic Fourier Series and the Stabilization of Distributed Semi-Linear Control Systems * , 2006 .

[20]  LIONEL ROSIER,et al.  Exact Boundary Controllability for the Linear Korteweg--de Vries Equation on the Half-Line , 2000, SIAM J. Control. Optim..

[21]  R. Datko,et al.  Uniform Asymptotic Stability of Evolutionary Processes in a Banach Space , 1972 .

[22]  Marius Tucsnak,et al.  A spectral approach for the exact observability of infinite dimensional systems with skew-adjoint generator. , 2005 .

[23]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[24]  P. Gérard Microlocal defect measures , 1991 .

[25]  Elaine Machtyngier,et al.  Exact Controllability for the Schrodinger Equation , 1994 .

[26]  David L. Russell,et al.  A General Theory of Observation and Control , 1977 .

[27]  Stéphane Jaffard Contrôle interne exact des vibrations d'une plaque rectangulaire , 1990 .

[28]  V. Komornik Exact Controllability and Stabilization: The Multiplier Method , 1995 .

[29]  D. Russell Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .

[30]  David L. Russell,et al.  Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain , 1993 .

[31]  David L. Russell,et al.  Exact controllability and stabilizability of the Korteweg-de Vries equation , 1996 .

[32]  David L. Russell,et al.  Smoothing and Decay Properties of Solutions of the Korteweg-deVries Equation on a Periodic Domain with Point Dissipation , 1995 .

[33]  Enrique Zuazua,et al.  Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods , 2005, SIAM Rev..

[34]  N. Burq,et al.  Contrôle de l'équation des ondes dans des ouverts comportant des coins , 1998 .

[35]  Lionel Rosier,et al.  Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain , 1997 .

[36]  Bing-Yu Zhang,et al.  Exact Boundary Controllability of the Korteweg--de Vries Equation , 1999 .

[37]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[38]  P. Gérard,et al.  Condition ncessaire et suffisante pour la contrlabilit exacte des ondes , 1997 .

[39]  Zhuangyi Liu,et al.  Characterization of polynomial decay rate for the solution of linear evolution equation , 2005 .

[40]  A. Ingham Some trigonometrical inequalities with applications to the theory of series , 1936 .

[41]  M. Slemrod,et al.  Nonharmonic fourier series and the stabilization of distributed semi‐linear control systems , 1979 .

[42]  Sergio Guerrero,et al.  Global Carleman Inequalities for Parabolic Systems and Applications to Controllability , 2006, SIAM J. Control. Optim..

[43]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[44]  D. L. Russell Review: J.-L. Lions, Controlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués , 1990 .

[45]  Eduardo Cerpa,et al.  Exact Controllability of a Nonlinear Korteweg--de Vries Equation on a Critical Spatial Domain , 2007, SIAM J. Control. Optim..

[46]  J. Coron Control and Nonlinearity , 2007 .

[47]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[48]  David L. Russell,et al.  A Unified Boundary Controllability Theory for Hyperbolic and Parabolic Partial Differential Equations , 1973 .