Parametric methods of cyclic-polyspectrum estimation for AM signals

Parametric methods of amplitude-modulated (AM) models are discussed using the cyclic statistics of signals. The parameter equations of AM mixed phase models are given in terms of any order cyclic-cumulants and moments. For non-minimum phase AR, MA and ARMA models, the parameter estimation based on parameter equations and cumulant-polyspectra formulas is presented respectively. All the strongly consistent single record estimators based algorithms are phase sensitive and insensitive to any stationary noise.

[1]  Jitendra Tugnait Fitting noncausal autoregressive signal plus noise models to noisy non-Gaussian linear processes , 1987 .

[2]  Emanuel Parzen,et al.  ON SPECTRAL ANALYSIS WITH MISSING OBSERVATIONS AND AMPLITUDE MODULATION , 1962 .

[3]  Jitendra K. Tugnait,et al.  Parameter estimation for noncausal ARMA models of non-Gaussian signals via cumulant matching , 1995, IEEE Trans. Signal Process..

[4]  Hongwei Li,et al.  Almost sure convergence analysis of mixed time averages and k th-order cyclic statistics , 1997, IEEE Trans. Inf. Theory.

[5]  Georgios B. Giannakis,et al.  A unifying maximum-likelihood view of cumulant and polyspectral measures for non-Gaussian signal classification and estimation , 1992, IEEE Trans. Inf. Theory.

[6]  Ananthram Swami Multiplicative noise models: parameter estimation using cumulants , 1990 .

[7]  Georgios B. Giannakis,et al.  Nonparametric cyclic- polyspectral analysis of AM signals and processes with missing observations , 1993, IEEE Trans. Inf. Theory.

[8]  Jitendra K. Tugnait,et al.  Approaches of FIR system identification with noisy data using higher order statistics , 1990, IEEE Trans. Acoust. Speech Signal Process..

[9]  Yonina Rosen,et al.  The second-order moments of the sample covariances for time series with missing observations , 1989, IEEE Trans. Inf. Theory.

[10]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[11]  Richard H. Jones,et al.  SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS , 1962 .

[12]  Georgios B. Giannakis,et al.  Comparison of higher-order and cyclic approaches for estimating random amplitude modulated harmonics , 1993, [1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics.

[13]  J. Tugnait,et al.  Fitting noncasual autoregressive signal plus noise models to noisy non-Gaussian linear processes , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[14]  Benjamin Friedlander,et al.  ARMA spectral estimation of time series with missing observations , 1984, IEEE Trans. Inf. Theory.

[15]  D. Brillinger Time Series: Data Analysis and Theory. , 1981 .

[16]  Georgios B. Giannakis,et al.  Harmonics in multiplicative and additive noise: parameter estimation using cyclic statistics , 1995, IEEE Trans. Signal Process..