New cyclic difference sets with Singer parameters
暂无分享,去创建一个
[1] Hans Dobbertin. Uniformly Representable Permutation Polynomials , 2001, SETA.
[2] Solomon W. Golomb,et al. Binary Pseudorandom Sequences of Period 2n-1 with Ideal Autocorrelation , 1998, IEEE Trans. Inf. Theory.
[3] J. Dieudonné,et al. La géométrie des groupes classiques , 1963 .
[4] R. Paley. On Orthogonal Matrices , 1933 .
[5] Laurence B. Milstein,et al. Spread Spectrum Communications , 1983, Encyclopedia of Wireless and Mobile Communications.
[6] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[7] R. Scholtz,et al. GMW sequences (Corresp.) , 1984 .
[8] K. Williams,et al. Gauss and Jacobi sums , 2021, Mathematical Surveys and Monographs.
[9] Robert S. Coulter. The Number of Rational Points of a Class of Artin-Schreier Curves , 2002 .
[10] David G. Glynn,et al. Two new sequences of ovals in finite desarguesian planes of even order , 1983 .
[11] Hans Dobbertin. Another Proof of Kasami's Theorem , 1999, Des. Codes Cryptogr..
[12] H. Dobbertin. Kasami Power Functions, Permutation Polynomials and Cyclic Difference Sets , 1999 .
[13] N Hamada,et al. On the BIB Design Having the Minimum p-Rank , 1975, J. Comb. Theory A.
[14] Guang Gong,et al. Hadamard transforms of three-term sequences , 1999, IEEE Trans. Inf. Theory.
[15] Norman Biggs,et al. T. P. Kirkman, Mathematician , 1981 .
[16] B. Gordon,et al. Some New Difference Sets , 1962, Canadian Journal of Mathematics.
[17] Jong-Seon No,et al. Binary Pseudorandom Sequences of Period with Ideal Autocorrelation Generated by the Polynomial , 1998 .
[18] Marshall Hall,et al. A survey of difference sets , 1956 .
[19] Stephen D. Cohen,et al. A class of exceptional polynomials , 1994 .
[20] Antonio Maschietti. Difference Sets and Hyperovals , 1998, Des. Codes Cryptogr..
[21] Hans Dobbertin,et al. Almost Perfect Nonlinear Power Functions on GF(2n): The Niho Case , 1999, Inf. Comput..
[22] Jong-Seon No,et al. Binary Pseudorandom Sequences of Period 2m-1 with Ideal Autocorrelation Generated by the Polynomial zd + (z+1)d , 1998, IEEE Trans. Inf. Theory.
[23] Geoffrey R. Robinson,et al. Linear Groups , 2022 .
[24] P. V. Kumar,et al. On a sequence conjectured to have ideal 2-level autocorrelation function , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[25] N. Jacobson,et al. Basic Algebra II , 1989 .
[26] Hanfried Lenz,et al. Design theory , 1985 .
[27] Solomon W. Golomb,et al. Shift Register Sequences , 1981 .
[28] Qing Xiang. Recent Results on Difference Sets with Classical Parameters , 1999 .
[29] Robert Gold,et al. Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.) , 1968, IEEE Trans. Inf. Theory.
[30] John F. Dillon,et al. Multiplicative Difference Sets via Additive Characters , 1999, Des. Codes Cryptogr..
[31] Hans Dobbertin,et al. Almost Perfect Nonlinear Power Functions on GF(2n): The Welch Case , 1999, IEEE Trans. Inf. Theory.
[32] Tadao Kasami,et al. The Weight Enumerators for Several Clauses of Subcodes of the 2nd Order Binary Reed-Muller Codes , 1971, Inf. Control..
[33] Robert A. Scholtz,et al. GMW sequences , 1984, IEEE Trans. Inf. Theory.
[34] O. S. Rothaus,et al. On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.
[35] Laurence B. Milstein,et al. Spread-Spectrum Communications , 1983 .
[36] L. D. Baumert. Cyclic Difference Sets , 1971 .
[37] J. Singer. A theorem in finite projective geometry and some applications to number theory , 1938 .