New cyclic difference sets with Singer parameters

The main result in this paper is a general construction of @f(m)/2 pairwise inequivalent cyclic difference sets with Singer parameters (v,k,@l)=(2^m-1,2^m^-^1,2^m^-^2) for anym>=3. The construction was conjectured by the second author at Oberwolfach in 1998. We also give a complete proof of related conjectures made by No, Chung and Yun and by No, Golomb, Gong, Lee and Gaal which produce another difference set for each m>=7 not a multiple of 3. Our proofs exploit Fourier analysis on the additive group of GF(2^m) and draw heavily on the theory of quadratic forms in characteristic 2. By-products of our results are a new class of bent functions and a new short proof of the exceptionality of the Muller-Cohen-Matthews polynomials. Furthermore, following the results of this paper, there are today no sporadic examples of difference sets with these parameters; i.e. every known such difference set belongs to a series given by a constructive theorem.

[1]  Hans Dobbertin Uniformly Representable Permutation Polynomials , 2001, SETA.

[2]  Solomon W. Golomb,et al.  Binary Pseudorandom Sequences of Period 2n-1 with Ideal Autocorrelation , 1998, IEEE Trans. Inf. Theory.

[3]  J. Dieudonné,et al.  La géométrie des groupes classiques , 1963 .

[4]  R. Paley On Orthogonal Matrices , 1933 .

[5]  Laurence B. Milstein,et al.  Spread Spectrum Communications , 1983, Encyclopedia of Wireless and Mobile Communications.

[6]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[7]  R. Scholtz,et al.  GMW sequences (Corresp.) , 1984 .

[8]  K. Williams,et al.  Gauss and Jacobi sums , 2021, Mathematical Surveys and Monographs.

[9]  Robert S. Coulter The Number of Rational Points of a Class of Artin-Schreier Curves , 2002 .

[10]  David G. Glynn,et al.  Two new sequences of ovals in finite desarguesian planes of even order , 1983 .

[11]  Hans Dobbertin Another Proof of Kasami's Theorem , 1999, Des. Codes Cryptogr..

[12]  H. Dobbertin Kasami Power Functions, Permutation Polynomials and Cyclic Difference Sets , 1999 .

[13]  N Hamada,et al.  On the BIB Design Having the Minimum p-Rank , 1975, J. Comb. Theory A.

[14]  Guang Gong,et al.  Hadamard transforms of three-term sequences , 1999, IEEE Trans. Inf. Theory.

[15]  Norman Biggs,et al.  T. P. Kirkman, Mathematician , 1981 .

[16]  B. Gordon,et al.  Some New Difference Sets , 1962, Canadian Journal of Mathematics.

[17]  Jong-Seon No,et al.  Binary Pseudorandom Sequences of Period with Ideal Autocorrelation Generated by the Polynomial , 1998 .

[18]  Marshall Hall,et al.  A survey of difference sets , 1956 .

[19]  Stephen D. Cohen,et al.  A class of exceptional polynomials , 1994 .

[20]  Antonio Maschietti Difference Sets and Hyperovals , 1998, Des. Codes Cryptogr..

[21]  Hans Dobbertin,et al.  Almost Perfect Nonlinear Power Functions on GF(2n): The Niho Case , 1999, Inf. Comput..

[22]  Jong-Seon No,et al.  Binary Pseudorandom Sequences of Period 2m-1 with Ideal Autocorrelation Generated by the Polynomial zd + (z+1)d , 1998, IEEE Trans. Inf. Theory.

[23]  Geoffrey R. Robinson,et al.  Linear Groups , 2022 .

[24]  P. V. Kumar,et al.  On a sequence conjectured to have ideal 2-level autocorrelation function , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[25]  N. Jacobson,et al.  Basic Algebra II , 1989 .

[26]  Hanfried Lenz,et al.  Design theory , 1985 .

[27]  Solomon W. Golomb,et al.  Shift Register Sequences , 1981 .

[28]  Qing Xiang Recent Results on Difference Sets with Classical Parameters , 1999 .

[29]  Robert Gold,et al.  Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.) , 1968, IEEE Trans. Inf. Theory.

[30]  John F. Dillon,et al.  Multiplicative Difference Sets via Additive Characters , 1999, Des. Codes Cryptogr..

[31]  Hans Dobbertin,et al.  Almost Perfect Nonlinear Power Functions on GF(2n): The Welch Case , 1999, IEEE Trans. Inf. Theory.

[32]  Tadao Kasami,et al.  The Weight Enumerators for Several Clauses of Subcodes of the 2nd Order Binary Reed-Muller Codes , 1971, Inf. Control..

[33]  Robert A. Scholtz,et al.  GMW sequences , 1984, IEEE Trans. Inf. Theory.

[34]  O. S. Rothaus,et al.  On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.

[35]  Laurence B. Milstein,et al.  Spread-Spectrum Communications , 1983 .

[36]  L. D. Baumert Cyclic Difference Sets , 1971 .

[37]  J. Singer A theorem in finite projective geometry and some applications to number theory , 1938 .